
Fuzz Testing for Automotive Cyber-security

Daniel S. Fowler, Jeremy Bryans and Siraj Ahmed Shaikh
Systems Security Group

Coventry University

Coventry, CV1 5FB, UK

Email: {fowlerd3,jeremy.bryans,siraj.shaikh}@coventry.ac.uk

Paul Wooderson
HORIBA MIRA Limited

Watling Street

Nuneaton, CV10 0TU, UK

Email: paul.wooderson@horiba-mira.com

Abstract—There is increasing computational complexity within
the connected car, and with the advent of autonomous vehicles,
how do manufacturers test for cyber-security assurance? The
fuzz test is a successful black box testing method that hackers
have used to find security weaknesses in various domains.
Therefore, should the fuzz test, mentioned (without any details)
in SAE J3061, be applied more widely into the vehicle systems
development process to help reduce vulnerabilities? To investigate
this question a custom fuzzer was developed to allow for exper-
imentation against a target vehicle’s CAN bus (used as the data
interconnect for the vehicle’s ECUs). The results demonstrate
that the fuzz test has a part to play as one of the many security
tests that a vehicle’s systems need to undergo before being made
ready for series production. However, previous problems raised
when cyber testing a vehicle were confirmed. Thus, in adding
the fuzz test to the automotive engineering tool box some issues
are raised that need addressing in future research.

I. INTRODUCTION

All mass manufacture vehicles require internal networked

computers in order to function. The computers in vehicles

are called Electronic Control Units (ECUs). The ECUs run

everything from the engine to the interior lights and are

commonly interconnected with the low-cost Controller Area

Network (CAN) data bus. Other networks found in vehicles

include FlexRay, Media Oriented Systems Transport (MOST),

Local Interconnect Network (LIN) and two-wire Ethernet

(100BASE-T1). These vehicular systems maybe connected

directly or indirectly to the Internet. This is achieved via built

in cellular communications, or via driver or passenger gadgets,

for example smartphones. This makes the cars we drive, or the

transport we use, cyber-physical systems (CPS) and Internet of

Things (IoT) devices. These connected cars have been shown

to suffer from similar cyber-security vulnerabilities [1] as other

computer based networked systems, whether home, office or

industrial. Thus, the connected and autonomous vehicle (CAV)

needs to be resilient against cyber attacks. Therefore, cyber-

security testing has been added to the list of tasks that are part

of, or should be part of, a manufacturer’s vehicle engineering

process [2], as governments are now stipulating [3].

Applying established cyber-security testing methods to au-

tomotive engineering is challenging due to the domain specific

technology and CPS environment. Is the fuzz test, a proven

dynamic test method for software, a worthwhile and useful

addition to the automotive domain? The contribution here is

a method to examine that question, via a custom fuzz test

program, and to begin to address the challenges in bringing

the fuzz test into automotive systems testing.

After briefly introducing the fuzz test the existing work in

applying it to vehicle systems is examined. The motivation and

challenges in testing CPS systems are covered. The vehicle

technology subjected to the fuzz test, the CAN bus, is then

introduced. Running the custom software and the resultant

output is presented, before discussing the observations and

further work, and conclusion.

A. What is a fuzz test?

The fuzz test is a dynamic analysis test method, i.e. it

is performed against a running system (as opposed to static

analysis of source code). A fuzzer is a program that performs

fuzz tests. The generation of random input data to a target

system is a primary function of the fuzzer. However, to be

more efficient, and hence more effective, a fuzzer can operate

with an understanding of system data formats, communication

protocols and interfaces. The essence of fuzz testing is:

• Random input (fuzz) is sent to a system’s interfaces.

• The system response is monitored.

• If a system failure occurs the conditions that caused it

are recorded and the system is reset.

• The process is repeated a large number of times to cover

a large input value space.

• Fuzz testing is automated for efficiency due to the high

number of tests that are executed.

Being able to cause software to fail is one of the methods

attackers use to penetrate systems. As such fuzzing is now a

mature and well established method to find vulnerabilities in

applications [4] and operating systems [5], and is used to help

reverse engineer automotive systems [6]. Yet its use in general

testing of automotive systems is low (Figure 1) [7].

II. RELATED WORK

Research into vehicle hacking is often concerned with prov-

ing vulnerabilities in connected vehicles [8]. Some researchers

do offer solutions alongside the attack [9]. Despite early

practical demonstrations [10] in compromising the Controller

Area Network (CAN), it was not until practical connected

car cyber attacks were widely publicised in the mass media

in 2010 [11], that interest in cyber attacks against vehicles

increased. The original 2010 [12] research that achieved the

widespread media coverage noted that:

239

2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops

2325-6664/18/$31.00 ©2018 IEEE
DOI 10.1109/DSN-W.2018.00070

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Testing methods in the automotive industry, derived from data from [7]

In fact, because the range of valid CAN packets

is rather small, significant damage can be done by

simple fuzzing of packets (i.e., iterative testing of

random or partially random packets). Indeed, for

attackers seeking indiscriminate disruption, fuzzing

is an effective attack by itself.

Although their main use of fuzzing was to help reverse

engineer the target vehicle’s systems. However, in web services

and general information systems fuzzing is used to break

software. Yet the value of fuzzing for car hacking, so far, has

been in helping to find how vehicle systems function [6]. This

is because the operational details of a vehicles internal systems

are commercial secrets. Often the only way to determine what

a particular CAN message does is to capture the network

packets while operating a vehicle feature. There has been

little work done on the usefulness of the fuzz test for pre-

production security testing. What is available with regards to

fuzzing automotive systems?

The design of a fuzzer for Unified Diagnostics Services

(UDS), used for ECU diagnostics, is provided by [13]. That

report is mainly concerned with the design of the fuzzer, which

was tested against a UDS simulator. It did find weaknesses

in the simulator’s UDS implementation, though no in-depth

presentation of the results is provided.

The test oracle problem (how to determine, or not, the

correct responses of a system) [14] is a challenge for CPSs,

particularly with automating the entire security testing process.

In [15] a link from a hardware-in-the-loop (HIL) and software-

in-the-loop (SIL) test and development system, into the Python

based open source fuzzer, called booFuzz, is presented. They

propose several ways to address the test oracle issue:

• Network communication monitoring.

• Monitoring through a component debug interface. Nor-

mally used for hardware debugging and not normally

available once manufacturing begins.

• Direct and indirect monitoring of system signals available

internally to the simulator.

• Use of the automotive Universal Measurement and Cali-

bration Protocol (XCP) that allows remote access to the

internals of an ECU.

TABLE I
AUTOMOTIVE CAN FUZZING TOOLS

Tool License Approach
beStorm Commercial Protocol based
Defensics Commercial Protocol based
CANoe/booFuzz Mixed Design based
Peach Mixed Protocol based
Custom software As required As required

• Monitoring of the physical responses of the system with

external sensors.

However, it was not considered that any extra monitoring

capabilities may be used by the attackers, who look for any

source of information to help break systems. Thus, supporting

XCP may help with detailed ECU diagnostics, but it provides

another channel that may be exploited. One interesting point

noted is that automotive ECUs have different operating modes.

For most of its life an ECU is providing normal operational

functions. However, during vehicle servicing an ECU can

be locked or unlocked for software updates via UDS. It is

important for system testers to cover all the states of an ECU,

as these different states have been previously exploited [1].

How a commercial fuzzer is configured to interface to

an automotive network is provided in [16]. No practical

application is given, only publishing results on data packet

throughput rates. In [17] another commercial fuzzing tool is

used to test a single ECU. The test environment defines a

comparison module that acts as the test oracle, verifying or

not the correct operation of the ECU when its CAN messages

are being fuzzed.

Table I lists the fuzzers used in the published referenced

work, plus the Peach fuzzer, which is advertised as supporting

automotive testing1. Most are general purpose commercial

products, booFuzz is open source and Peach has an open

source version. They all require configuring to work with

automotive systems. The two main approaches are 1) protocol,

using the format of the CAN data packets (Table III), or

2) input from the system design, i.e. having pre-existing

knowledge of the data packet contents (and could be informed

from the source code running in an ECU). In the following

section the need for the automotive fuzz test is examined.

III. MOTIVATION

Safety is a key design objective for a vehicle. Cars are

tested for operational correctness, certification, and homolo-

gation against international and national standards. The Inter-

national Organization for Standardization (ISO) publishes ISO

26262 [18] for functional safety of electrical and electronic

systems. However, for the connected car the cyber attack is a

threat beyond the normal functional operation. How can that

threat be addressed? The Society of Automotive Engineers

(SAE) J3061 publication [2] provides some best practice

guidelines for CPSs as a starting point for introducing security

aware processes and designs, plus ISO/SAE AWI 21434 (Road

1https://www.peach.tech/

240

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

Vehicles, Cybersecurity Engineering) is in development. How-

ever, for systems engineers applicable methods are needed.

A. From Physical Locks to Cyber-locks

Fundamentally security is an economic problem [19],

enough security must be added to a system to dissuade the

adversaries. Security measures were once only physical, e.g.

stronger locks. Now authentication, data and communications

encryption, and other cryptography measures are required for

the cyber-locks to protect security properties, in the form of

the CIA triad:

• Confidentiality - preventing the viewing of sensitive data.

• Integrity - preventing changes in data values.

• Availability - protecting system operations.

Still, cyber-locks do not guarantee system security. The

general problem with computer code is that it is rarely error

free. There will be a given error rate in the hundreds of

thousands of lines of code (LOC) in a computational system,

despite best efforts to eliminate bugs [20]. The goal of the

attacker is to find the code errors that can be exploited for

gain. The greater the effort (i.e. cost) involved in finding a

weakness, the more likely the attacker will look elsewhere.

However, the manufacturer faces a dilemma, at a certain

point reducing the number of errors in a system becomes

exponentially harder [21], and any project has finite resources.

Methods that can alleviate this tension are therefore beneficial.

B. The CPS Fuzz Test Challenges

If hackers use fuzzing to break systems why not deploy

the same technique during pre-production testing to improve

cyber-security resilience. Indeed fuzz testing is one part of

the well regarded Microsoft Secure Development Lifecycle

(SDL) [22], and is listed in J3061. However, in J3061 there is

no coverage of any resources to aid manufacturers, and there

has been little in-depth research into applying the fuzz test to

CPS domains. What are the challenges in getting the fuzz test

more widely used in the automotive industry?

1) The CPS nature of the vehicle: For the CPSs that are

now being deployed around us, the computational command

and control results in physical non-computational actions. A

vehicle driver pressing a switch can cause a digital command

to be sent over a data network, and the action results in a real

world output, e.g. a light being turned on. Thus, monitoring

of the system under test (SUT) or device under test (DUT)

has added CPS complexity. However, for the pre-production

vehicle design phase this CPS monitoring complexity can be

mitigated with the aid of hardware-in-the-loop and software-

in-the-loop equipment to simulate the physical world.

2) The large volumes of data generated by a vehicle: The

data volumes continuously generated inside a vehicle will only

increase as more computational systems are incorporated into

cars. The data volume issue is a problem not unfamiliar in

traditional IT security. Furthermore, different communications

protocols are deployed in the automotive industry, plus there

is a range of data types and formats to handle. Vehicle data

handling is another big data problem.

3) Incomplete knowledge: Functional tests that target the

known specification and interfaces of a component are easily

determined. However, additional features developed for other

uses, e.g. to support other customers or for component testing,

may be present. An undocumented application programming

interface (API), as well as an untested code path, could

be exploitable. Automotive engineers need to factor in the

unknowns.

4) Defining measureable metrics: The complexity of a CPS

means no two similar systems, or similar components are

comparable. This means that measuring the effectiveness of a

fuzz test is difficult. In other domains the fuzz test is orientated

towards the final count of the number of bugs found [5].

However, this can only be relative to other runs on the same

system, plus, due to the random nature of the fuzz test, the

comparisons can only be approximations. For the attacker the

total number of flaws found is irrelevant. They are after the

one flaw that gives them the ability to violate the CIA triad.

Whereas the system manufacturer needs to find as many of

these flaws as possible prior to system delivery. However, if

no flaws are found it does not mean none exist, it just means

that testing has not triggered anything.

Given the above motivation and challenges, the hypothesis

is that the fuzz test is beneficial for improving the security

of the networked ECUs in a vehicle. If true, then adding the

fuzz test to vehicle testing methods, as listed in J3061, is a

valid assertion. Here a custom fuzzer is used to apply the

fuzz test to a target vehicle. In doing so what can be learnt

to address the challenges? How does the fuzzer need to be

adapted? What is needed for future applications of the fuzz

test in the automotive domain? Whilst empirical results do

exist for applying the fuzz test to vehicle systems, there have

been few published experiments with usable lessons.

Here the fuzzer is interfacing to the vehicle via the CAN

bus, thus a brief introduction to CAN is provided.

IV. THE AUTOMOTIVE CAN BUS

The CAN bus was introduced in the 1980’s, for those

interested in the bit level protocol there are plenty of resources

available [23]. Each node (ECU) on the bus can initiate data

transmission, with only one node at a time transmitting. For a

standard CAN data frame the 11-bit arbitration identifier (a.k.a.

packet id) allows for the highest priority messages to continue

transmission in the event of two to more nodes transmitting

simultaneously. A standard CAN packet has up to eight bytes

(64 bits) for data. The CAN transceiver chips in a node handles

the protocol automatically, providing the id, data length and

data bytes to the higher level application. Table II shows some

CAN packets captured from the target vehicle. By today’s

standards the transmission speed of standard CAN is modest,

designed to support up to 1Mb/s. A common transmission

speed used in cars is 500kb/s.

CAN, designed without security in mind, is easily accessi-

ble. Equipment to interface to CAN is low cost. A CAN bus is

usually exposed in a vehicle via the open, in-cabin On-board

Diagnostics (OBD) port, plus a wire tap is possible wherever

241

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

TABLE II
EXAMPLES OF CAN PACKETS CAPTURED FROM A CAR

Time (ms) Id Length Data
5328.009 043A 8 1C 21 17 71 17 71 FF FF
5329.008 0296 8 00 00 00 00 00 00 00 60
5330.007 04B0 8 00 00 00 00 00 00 00 00
5331.029 04F2 8 00 53 6C 00 00 00 00 00
5338.165 0215 7 00 1C 01 00 00 01 40

Fig. 2. PC based fuzzer for automotive testing

the vehicle wiring is accessible. These factors allow for

straightforward research into the manipulation of CAN data.

A compromised ECU or man-in-the-middle (MITM) attack

(for example an aftermarket device attached to a vehicle’s

OBD connector) can spoof the messages transmitted, affecting

normal operation and threatening vehicle and passenger safety.

This CAN manipulation is one element of successful cyber

attacks against vehicles [1]. Strengthening the security of CAN

is a useful goal, however, despite several schemes available to

add encryption to CAN, no scheme meets all the criteria for

deployment in series production [24].

V. METHODOLOGY

The available commercial and mixed licensed fuzzers listed

in Table I have been specifically customised for use with

automotive systems. The custom fuzzer introduced here, Fig-

ure 2, developed for HORIBA MIRA Ltd., is specifically

programmed to deal with the CAN format. The fuzzer’s design

is simple, with a smaller number of sub-components than,

for example, [15] which jumps between Python and .NET

technologies when executing.
1) PC based fuzzer: The fuzz test software was developed

on a computer linked to a Vector vehicle simulator (Figure 8).

The Vector equipment is widely used in industry for design,

validation, HIL, and SIL testing of networked control systems,

including vehicular CAN based systems. The use of a vehi-

cle simulator simplified the development cycle as access to

the target vehicle was not required during the development

process.

The software for the fuzz test is written in the C# computer

programming language. The Integrated Development Envi-

ronment (IDE) used is Microsoft Visual Studio. The major

functional items for the software fuzzer program are the User

Interface (UI) screens for command and control, a timing

thread for regular CAN data transmission, a random bytes

generator for the fuzzed CAN messages, a communications

API handling module, and a CAN bus traffic monitor.
2) Link to the SUT or DUT via the vehicle data bus or ECU

interface: A Universal Serial Bus (USB) to CAN hardware

adaptor is used to connect the fuzzer software to the CAN

bus, here a PCAN-USB product manufactured by PEAK-

System is used. The PCAN-USB device has an Application

Fig. 3. UI to configure the CAN fuzzer

Programming Interface (API) that allows the device to be

accessed from C#.

The USB CAN adaptor requires 9-way D-type sockets wired

to conform to the CANopen specifications (CiA303-1)2. The

two CAN communication wires are referred to as CAN High

and CAN Low, with CAN High wired to pin 7 and CAN Low

wired to pin 2 on the 9-pin connector (an identical socket is

used to connect to the simulator hardware).

The fuzzer is configured through its UI, providing control

over the data injected into the SUT or DUT (via the CAN

bus), Figure 3. Through the UI the fuzzer can be programmed

to generate a variation on a single bit in a single message,

to every bit in every message. This feature is important due

to the combinatorial explosion problem with the CAN data

stream. A standard CAN packet with a 11-bit id and a one

byte payload has half a million packet combinations (219). At

a 1ms transmission frequency (the current minimum for this

fuzzer) it is over eight minutes to transmit all combinations.

Add another data byte and all combinations transmit over a

1.5 days. Beyond that further increases in data length become

impractical and the fuzzing needs to be targeted (for example

by fuzzing around known message ids monitored on the CAN

bus, or being informed by the design).

Once configured the fuzzer executes against the SUT or

DUT, sending out the random CAN data. It monitors the

target system to record and act upon responses to the injected

messages.

VI. RESULTS AND ANALYSIS

The target vehicle uses standard CAN data packets (11-bit

ids). The packet parameters (id, data length, payload bytes)

that are available to be fuzzed are shown in Table III. From

the parameters defined in the fuzzer the random CAN data

packets are generated, Table IV.

The fuzzer analyses CAN data to allow for data integrity

checks. Figure 4 shows the mean data byte value for each byte

position, calculated from 100,000 CAN packets captured from

the target vehicle’s network. It shows a non-linear distribution

2https://www.can-cia.org/standardization/specifications/

242

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

TABLE III
FUZZING ELEMENTS OF A CAN DATA PACKET FOR THE TARGET VEHICLE

Item Range Description
CAN Id {0,1,2,. . . ,2047} All standard message ids
Payload length {0,1,2,. . . ,8} Vary message length
Payload byte {0,1,2,. . . ,256} Vary payload bytes
Rate > 0 Vary transmission interval

TABLE IV
SAMPLE RANDOM CAN PACKET OUTPUT FROM THE FUZZER

Time (ms) Id Length Data
3031.094 000F 6 59 63 BA 5A 77 D5
3032.846 0442 2 AC D3
3035.022 02C4 3 49 01 D8
3036.734 0068 0
3039.070 0694 5 F5 DA DA 03 A4
3040.854 065A 2 29 95

of eight bit values. In comparison Figure 5 shows the same

calculation on 66144 CAN packets generated by the the fuzzer.

The linear distribution, with a overall mean value of 127 for

all bytes in all messages, providing evidence that the fuzzer

is correctly generating an even spread of byte values.

The effect of the random CAN packets from the fuzzer

can be measured in the Vector simulator. The normal vehicle

signals are illustrated in Figure 6. Figure 7, captured over

a shorter period than Figure 6, illustrates the effect of the

randomised data packets on the signals.

The simulator responds erratically when the fuzzer is run-

ning and injecting CAN packets. This is caused by the rapid

variation in signals induced by the malformed CAN data. In

Figure 8 the simulated vehicle is displaying a negative engine

RPM, showing that the vehicle simulation handles physically

invalid values in the same way as physically plausible ones.

Once the fuzz test software was operational it could be used

against physical targets, i.e. vehicles and vehicle components.

Previous car hacking research has shown that permanent dam-

age to vehicles is possible, for example rendering a ECU non-

functional (bricking) [25]. Therefore, before testing against

the target vehicle, an available instrument cluster, used on the

target vehicle, was fuzzed. Running the fuzzer against the in-

Fig. 4. Mean values for each data byte position from 100000 captured vehicle
CAN messages

Fig. 5. Mean values for each data byte position from 66144 randomly
generated CAN messages

Fig. 6. Simulated vehicle signals

Fig. 7. Effect of fuzzing on signals

Fig. 8. Inappropriate value on a vehicle simulator display via fuzzing

243

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Crashing a vehicle component as a result of fuzzing

strument cluster immediately resulted in Malfunction Indicator

Lights (MIL) illumination, warning sounds and erratic gauge

needles. Furthermore, a digital display began to display the

word crash at a regular rate. Cycling the power to the cluster

removes any MILs that became illuminated. Unfortunately the

crash message would not clear.

This damage to the component required a reassessment of

using the fuzzer against the target vehicle, a shared resource

that would incur repair costs if damaged. Therefore, the exper-

iment was limited to just checking that the fuzzer had an effect

on the target vehicle. Instead of running the fuzzer across the

entire CAN message space, only a small range of messages

would be fuzzed. Messages IDs that had been previously

observed on the vehicles CAN buses in normal operation, for

example the message known to affect the instrument cluster

gauge needles. With the fuzzer connected to the vehicle using

an OBD cable (via the USB to CAN adaptor), fuzzed messages

were sent into the idling target vehicle. The target vehicle

exposes two CAN buses, the fuzzer was tested on both buses.

The vehicle exhibited similar behaviour to the cluster testing,

namely the illumination of various MIL lights, warning sounds

from the instrument area, fluctuating gauge readings, error

messages on a central vehicle console, and erratic engine idling

RPM. Once it was observed that fuzzing had a significant

affect it was halted to prevent possible damage, as in Figure 9.

In order to prevent the possibility of damage to the tar-

get vehicle’s components, further testing of the fuzzer was

performed against a bench-top hardware configuration. The

bench based configuration was implemented to represent an

increasing common feature of connected cars, namely the

control of vehicle functionality via an app, Figure 10.

A CAN bus target was constructed from Arduino single

board computers (SBCs) fitted with CAN interfaces. Each

SBC acting as an ECU on the network. The messages on

the CAN bus were a small subset of those transmitted on

the target vehicle’s CAN bus. One of the ECUs acts a Body

Control Module (BCM), with a Light Emitting Diode (LED)

representing the lock status of the vehicle (off for locked, on

for unlocked), Figure 11.

A diagram of the replicated functionality is shown in

Figure 12. The external phone app sends an unlock command

to a vehicles infotainment ECU (a.k.a. head unit). This is

Fig. 10. Vehicle control via a manufacturer’s smartphone app available from
the app stores

Fig. 11. CAN bus connecting three single board computers acting as ECUs

a secure connection (or should be). The infotainment unit

transmits the unlock command over the vehicle CAN bus. The

fuzzer is acting as a malicious unit connected to the vehicle

network (via the OBD port or a compromised ECU). When

the fuzzer runs it has no knowledge of the CAN message to

activate the locks.

For this experiment a PC app acts as the smartphone app,

Figure 13, sending the lock and unlock command as a proxy

for the infotainment ECU. This causes the LED to turn on

and off, indicating the normal system operation in locking

and unlocking the door. With the fuzzer, Figure 3, the unlock

(or lock) functionality was activated after a few minutes of

randomly generated CAN data. To aid with the detection of

the unlock state the testbench was augmented to transmit an

unlock acknowledgement CAN message. For the real vehicle

244

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 12. Remote vehicle unlock functionality

Fig. 13. PC vehicle lock/unlock app

another detection mechanism would have been required, for

example a sensor on the door lock.

The fuzzer currently has a maximum message transmission

rate of one message per millisecond. At this rate the mean time

to cause the unlock response, based on a small sample of 12

runs, was 431 seconds, Table V. The unlock code was testing

for a specific byte value in byte position one in a message with

a specific id. When the code was changed to include a test for

the length of the data packet, the mean time increased to 1959

seconds. This simple change in the code greatly increased time

taken for the fuzzer to find the correct unlock message. If

the change had been to check for a two byte value the time

increase would have even greater.

VII. DISCUSSION

These experiments have proved useful in pulling together

several strands of information from the few works available

TABLE V
FUZZER RUN TIMES TO ACTIVATE UNLOCK

Message Times (s) Mean (s)
Single id and byte 89, 1650, 373, 400, 223, 143,

773, 292, 21, 559, 572, 80
431

Single id, byte plus
data length

3039, 222, 1258, 1330, 314, 277,
959, 3788, 2872, 4472, 3581,
1394

1959

on applying the fuzz test to the vehicular CAN bus. The results

confirm previously made statements on fuzz testing vehicles,

namely:

• The fuzz test can be used to reverse engineer vehicle

messages.

• Disruption of a vehicle’s communication network is not

difficult.

• The fuzz test can be used as a form of cyber attack.

• Cyber-security testing vehicles and their components can

lead to vehicle component damage.

Since fuzz testing has a detrimental effect on a running

vehicle, and the simulator, it suggests that vehicle systems

need additional logic to ignore nonsensical CAN message

values, and sequences of such values. Thus, it is apparent

that the CAN bus needs additional engineering considerations

when operating in a connected car. Therefore, protection of

the CAN bus and vehicle components from external cyber

attacks is now a functional requirement for the design of

connected vehicle systems. For such systems the aim of these

experiments was to show the method that can be used to start

incorporating the fuzz test into the testing regime.

It has also been shown that a fuzz test can be used to verify

a systems conformance to the CIA triad. The fuzz test was able

to activate security functions without prior knowledge of the

system design (confidentiality), it was able to change values

displayed on instrumentation (integrity), and disrupt compo-

nent and vehicle operation (availability). This implies that for

connected vehicles designing functionality to correctly isolate

security concerns must be a consideration. Indeed the use of a

gateway ECU in newer vehicles indicates that manufacturers

are responding to the issue. Furthermore, simple modifications

to a design improve security. Here, by changing the CAN

message to activate the unlock and therefore, increasing the

time to find that feature by random fuzz testing.

The developed software will be used and extended for

further study of fuzz testing vehicle systems. It is a useful

research area as there is little quantitative data available on

running such tests on automotive systems. Other ways that

the work can be extended include:

• Use the fuzz test to determine the effectiveness of

protection measures, for example vehicle firewalls and

gateways, or additions to ECU software to mitigate cyber

attacks.

• Investigate manipulation of data packets at the bit level

to fuzz CAN protocol control bits (the data link layer).

• Apply the techniques to the Flexible Data-rate (FD)

version of CAN.

• Fuzz the APIs for vehicle engineering tools (e.g. CAN

interface devices) to ensure their resilience. For example

fuzz the API for the PEAK USB CAN adaptor used in

study.

• Use video processing software, for example OpenCV, to

monitor the cyber-physical actions of vehicle and devices

being fuzz tested.

245

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

VIII. CONCLUSION

Published work, section II, has been more concerned with

the configuration of commercial fuzz test software for automo-

tive testing, rather than results that directly examine the use of

the fuzz test to tackle CIA weaknesses in automotive systems.

If the consumer is to maintain trust in future CAV vehicles

then test methods to exercise CIA resilience, such as the fuzz

test, are required [26]. As such a body of knowledge is needed

on how to apply the fuzz test to the automotive domain that

goes beyond simply stating that the fuzz test must be used on

vehicles [2]. The contribution here begins to address the need

for more research in this area, providing some foundation for

making the fuzz test a worthwhile automotive test method.

A simple to use CAN fuzzer was developed to perform a

fuzz test on vehicle systems. In applying it to a test vehicle

it was evident that the systems were not resilient enough.

Another scenario was developed which demonstrated that the

fuzz test is a useful technique to be added to the testing

tool box. However, it is a technique that has combinatorial

limitations. As such its usefulness in the automotive domain

is likely to be in fuzz testing in a specific message space,

close to known messages, whether determined from design or

data traffic capture. Further research is needed to explore the

benefits of running such targeted fuzz tests, particularly with

regards to finding unconsidered code paths in ECUs.

It was also apparent that vehicle and component manufactur-

ers need to consider supporting such research, due to the cost

implications of working with their vehicles and components.

It is not practical for security researchers to have access to

a single component or vehicle, ideally access to several are

required. This has been previously acknowledged as a problem

and cost issue, and can be mitigated to some extent using

simulation [27].

Finally, the developed fuzz tester will be the foundation of

a useful tool that will find application in the security testing

of vehicle systems. However, it is only one small piece of the

connected car security engineering and testing process.

ACKNOWLEDGMENT

This research is partially supported by HORIBA MIRA

Ltd. as part of their collaboration with Coventry University’s

Institute for Future Transport and Cities.

REFERENCES

[1] C. Valasek and C. Miller, “Remote Exploitation of an Unaltered Pas-
senger Vehicle,” Black Hat USA, vol. 2015, pp. 1–91, 2015.

[2] SAE International, “J3061 - Cybersecurity Guidebook for Cyber-
Physical Vehicle Systems,” Warrendale, 2016.

[3] HM Government, “The Key Principles of Cyber Security for Connected
and Automated Vehicles,” HM Government, Tech. Rep., 2017.

[4] N. Rathaus and G. Evron, Open Source Fuzzing Tools. Burlington:
Syngress, 2007.

[5] P. Godefroid, M. Y. Levin, and D. Molnar, “SAGE: Whitebox Fuzzing
for Security Testing,” Queue, vol. 10, no. 1, pp. 20:20—-20:27, jan
2012. [Online]. Available: http://doi.acm.org/10.1145/2090147.2094081

[6] C. Smith, The Car Hacker’s Handbook : A Guide for the Penetration
Tester. No Starch Press, 2016.

[7] H. Altinger, F. Wotawa, and M. Schurius, “Testing methods used in
the automotive industry: results from a survey,” in Proceedings of the
2014 Workshop on Joining AcadeMiA and Industry Contributions to
Test Automation and Model-Based Testing - JAMAICA 2014. San Jose,
California: ACM, 2014, pp. 1–6.

[8] I. Foster, A. Prudhomme, K. Koscher, and S. Savage, “Fast and Vulner-
able: A Story of Telematic Failures,” in Proceedings of the USENIX
Workshop On Offensive Technologies (WOOT). Washington, D.C.:
USENIX, 2015.

[9] S. Woo, H. J. Jo, and D. H. Lee, “A Practical Wireless Attack on
the Connected Car and Security Protocol for In-Vehicle CAN,” IEEE
Transactions on Intelligent Transportation Systems, vol. 16, no. 2, pp.
993–1006, 2015.

[10] T. Hoppe and J. Dittman, “Sniffing/replay attacks on can buses: A
simulated attack on the electric window lift classified using an adapted
cert taxonomy,” in Proceedings of the 2nd workshop on embedded
systems security (WESS), 2007, pp. 1–6.

[11] BBC, “Hack attacks mounted on car control systems,” p. 1, 2010.
[Online]. Available: http://www.bbc.co.uk/news/10119492

[12] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham, and S. Savage,
“Experimental Security Analysis of a Modern Automobile,” in Security
and Privacy (SP), 2010 IEEE Symposium on, 2010, pp. 447–462.

[13] S. Bayer and A. Ptok, “Don’t Fuss about Fuzzing: Fuzzing In-Vehicular
Networks,” in escar Europe 2015. Cologne: isits AG International
School of IT Security AG, 2015, pp. 1–10.

[14] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The
Oracle Problem in Software Testing: A Survey,” IEEE Transactions on
Software Engineering, vol. 41, no. 5, pp. 507–525, 5 2015.

[15] P. Lapczynski, H. Heinemann, T. Schöneberger, and E. Metzker, “Au-
tomatically Generating Fuzz Tests from Automotive Communication
Databases,” isits AG International School of IT Security, Detroit, Tech.
Rep., jun 2017.

[16] R. Nishimura, R. Kurachi, K. Ito, T. Miyasaka, M. Yamamoto, and
M. Mishima, “Implementation of the CAN-FD protocol in the fuzzing
tool beSTORM,” in 2016 IEEE International Conference on Vehicular
Electronics and Safety (ICVES), jul 2016, pp. 1–6.

[17] D. K. Oka, A. Yvard, S. Bayer, and T. Kreuzinger, “Enabling Cyber
Security Testing of Automotive ECUs by Adding Monitoring Capabil-
ities,” in Embedded Security in Cars Conference, 15th escar Europe.
Berlin: isits AG, 2016, pp. 1–13.

[18] ISO, “ISO 26262-1:2011 Road vehicles - Functional safety -
Part 1: Vocabulary,” Geneva, p. 23, 2011. [Online]. Available:
https://www.iso.org/standard/43464.html

[19] R. J. Anderson, Security Engineering: A Guide to Building Dependable
Distributed Systems, 2nd ed. Indianapolis: Wiley Publishing Inc., 2008.

[20] B. G. Kolkhorst and A. J. Macina, “Developing error-free software,”
IEEE Aerospace and Electronic Systems Magazine, vol. 3, no. 11, pp.
25–31, nov 1988.

[21] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and
A. Bener, “Defect prediction from static code features: current
results, limitations, new approaches,” Automated Software Engineering,
vol. 17, no. 4, pp. 375–407, dec 2010. [Online]. Available:
https://doi.org/10.1007/s10515-010-0069-5

[22] M. Meng and W. Khoo, “An Analysis of Secure Software
Development Lifecycle from an Automotive Development Perspective,”
SAE, Warrendale, Tech. Rep., 2016. [Online]. Available: https:
//doi.org/10.4271/2016-01-0040

[23] Bosch, “CAN Specification Version 2.0,” Robert Bosch GmbH, Tech.
Rep., 1991.

[24] N. Nowdehi, A. Lautenbach, and T. Olovsson, “In-vehicle can message
authentication: An evaluation based on industrial criteria,” in 2017 IEEE
86th Vehicular Technology Conference (VTC-Fall), Sept 2017, pp. 1–7.

[25] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al.,
“Comprehensive experimental analyses of automotive attack surfaces.”
in 20th USENIX Security Symposium. San Francisco, 2011.

[26] K. Strandberg, T. Olovsson, and E. Jonsson, “Securing the connected
car: A security-enhancement methodology,” IEEE Vehicular Technology
Magazine, vol. 13, no. 1, pp. 56–65, March 2018.

[27] D. S. Fowler, M. Cheah, S. A. Shaikh, and J. Bryans, “Towards A
Testbed for Automotive Cybersecurity,” in Software Testing, Verification,
and Validation, ICST, International Conference on. Tokyo: IEEE, 2017.

246

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 29,2022 at 06:32:09 UTC from IEEE Xplore. Restrictions apply.

