
A Tale of Two Comprehensions? Analyzing Student Programmer

Atention during Code Summarization

ZACHARY KARAS, Computer Science, Vanderbilt University, Nashville, United States

AAKASH BANSAL, Computer Science and Engineering, University of Notre Dame, South Bend, United States

YIFAN ZHANG, Computer Science, Vanderbilt University, Nashville, United States

TOBY LI, Department of Computer Science and Engineering, University of Notre Dame, South Bend, United

States

COLLIN MCMILLAN, Department of Computer Science and Engineering, University of Notre Dame, South

Bend, United States

YU HUANG, Computer Science, Vanderbilt University, Nashville, United States

Code summarization is the task of creating short, natural language descriptions of source code. It is an important part of
code comprehension, and a powerful method of documentation. Previous work has made progress in identifying where
programmers focus in code as they write their own summaries (i.e., Writing). However, there is currently a gap studying
programmers’ attention as they read code with pre-written summaries (i.e., Reading). As a result, it is currently unknown
how these two forms of code comprehension compare: Reading and Writing. Also, there is a limited understanding of
programmer attention with respect to program semantics. We address these shortcomings with a human eye-tracking study
(�=27) comparing Reading and Writing. We examined programmers’ attention with respect to ine-grained program semantics,
including their attention sequences (i.e., scan paths). We ind distinctions in programmer attention across the comprehension
tasks, similarities in reading patterns between them, and diferences mediated by demographic factors. This can help guide
code comprehension in both CS education and automated code summarization. Furthermore, we mapped programmers’ gaze
data onto the Abstract Syntax Tree to explore another representation of human attention. We ind that visual behavior on this
structure is not always consistent with that on source code.
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1 INTRODUCTION

Documentation is critical to software maintenance and to software engineering at large [41, 61, 81]. Reading
source code on its own is time-consuming, so software developers rely on natural language descriptions of code
to both convey and understand its meaning [72]. Code summaries are one such example of natural language
descriptions, where the meaning of code is distilled into a short phrase [89]. For instance, ‘removes an entry from
the database’ can help a developer grasp the purpose of a code snippet without reading each detail. From another
perspective, writing a concise summary such as this demonstrates an insightful understanding of the code.
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Accordingly, researchers have studied how humans interpret code and condense it into a summary, and
have used eye-tracking to record programmers’ gaze as they write summaries [5, 70]. Those studies have shed
light on where programmers look in code as they write summaries, yet software developers typically read
code with an accompanying documentation [7, 35, 61]. Informally, if we consider summary writing to be an
active, generative process, is this form of comprehension diferent from that when a summary is present?
Research into code comprehension has been ongoing for over 40 years, and has developed several models for
how programmers understand source code, such as bottom-up and top-down comprehension [88]. However,
there is limited research into whether programmers’ purpose for reading source code has any inluence on
their comprehension strategies (i.e., reading code to generate documentation, or reading code with the help of
pre-written documentation). This has resulted in educational practices that may be imprecise around reading
code in diferent contexts [20], and automated techniques trained on data from one type of comprehension for
the role of another [70]. Uncovering nuances in code comprehension related to programmers’ purpose will not
only advance our foundational understanding [88], but can also provide guidance to educators teaching students
to derive meaning from code [13], and can help advise programmers how to write code summaries for those who
will later read them [36, 43, 66]. This information can also help methods for automated code summarization to
better tailor their output for developers reading code with a summary [70, 89].

Previous studies in code summarization have attempted to investigate human attention patterns on the semantic
level, but they have only considered four categories: the method declaration, the method body, control low
elements, and method calls [5, 70]. Those studies on student programmers and professional developers present
slightly diferent interpretations from one another. However, by considering only these four categories, the iner
details of programmer attention that reveal more nuance may have been overlooked. For instance, during code
summarization tasks, it is currently unknown how programmers attend to variables, arguments, parameters,
literals, or other semantic categories (Table 2). Furthermore, those studies did not analyze semantics within the
sequences of programmer attention (i.e., scan path) [69], which can be informative of deeper cognitive processes
during code comprehension [19, 42].

In this paper, we present results from a human study using eye-tracking from 27 undergraduate and graduate
CS students, totaling 35.68 hours of eye-tracking data for 1,657 Java summarization tasks, and 6,848,501 eye-
tracking data points. Participants read real-world Java methods under two conditions: Reading: participants
were given pre-written summaries and asked to evaluate their quality using validated criteria [39], and Writing:

participants generated their own code summaries. To understand programmer attention patterns in sharper detail,
we categorized each łwordž, or token, in the Java methods as one of 19 semantic categories [71]. We analyzed
semantics in the ordered sequence (i.e., scan path) of what programmers read in the code for a deeper look into
programmer cognition during code comprehension tasks. Finally, whereas current work in code comprehension
has examined programmer attention in the raw code [20, 63], we present, to the best of our knowledge, the irst
analysis of human attention on the Abstract Syntax Tree (AST), which is an underlying structural representation
of code. We hope this approach can inspire future work, especially considering AI models that seek to automate
code summarization using the AST [46, 51, 83]. In our analyses, we ind that where student programmers focus
can be mediated by expertise, other demographic factors, and the comprehension task (Reading or Writing). We
also ind that some broader reading patterns are stable between the two tasks, as well as some intriguing patterns
from the AST mappings. These results have implications for our understanding of code comprehension, and for
CS Education, tool design, and automated code summarization methods.

Speciically, we found: 1) in theWriting condition, programmers focus more on parameters, variable declarations,
and method calls; 2) programmers look more at the code when they are reading it to formulate their own
summaries; 3) cognitive load increases as a function of code complexity; 4) novices consistently look more at
variable declarations and conditional statements when summaries are provided, but not when programmers
write their own summaries; 5) regardless of the comprehension task, programmers consistently look between the
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same semantic categories (method declarations⇄ variable declarations, loop bodies⇄ conditional statements,
method declarations⇄ conditional statements); 6) programmers’ attention patterns are signiicantly diferent on
the raw code between Reading and Writing, but not on the AST; 7) experts’ and novices’ attention patterns are
signiicantly diferent on the raw code for Reading, but not on the AST. For Writing, their patterns are signiicantly
diferent on the raw code, and even more so on the AST.

Our contributions are as follows:

• A controlled human study with 27 participants performing code summarization tasks: one in which they
are given a summary, and one where they generate their own summary.

• A semantic-level comparison and traditional eye-tracking comparison of programmer attention when they
are given a pre-written summary, and when they write their own.

• An analysis of the semantic categories that CS students commonly look between during code summarization
tasks.

• A novel analysis mapping human attention to the AST, and contrasting to human attention on raw code.
• A detailed comparison between experts and novices, including semantic categories, reading sequences, and
AST mappings.

• Publicly available data and code here.

2 BACKGROUND AND RELATED WORK

In this section, we discuss prior literature on eye-tracking in software engineering and code summarization.

2.1 Eye-Tracking

Eye-tracking is a non-invasive technology that records visual attention and cognitive load [75]. The technology
has its roots in the 1800s, and has been used to study gaze patterns in marketing research [87], natural language
reading [67], and even ields such as aviation [64]. Eye-tracking is particularly useful for software engineering,
where researchers can closely monitor programmers’ code reading patterns and behavior in realistic work
conditions [40], especially with the development of such tools as iTrace [73]. Researchers have used other
cognitive measures, such as neuroimaging, to gain insights into the cognitive processes of coding. For instance,
researchers have compared patterns of brain activity and connectivity between coding and other cognitive skills,
such as mental rotation and prose writing [45, 49, 50]. Those methods are expensive, and are diferent from
eye-tracking in that they have a lower temporal resolution, and require researchers to make inferences about
programmers’ internal state. Eye-tracking, by contrast, measures humans’ external visual behaviors at a high
temporal resolution.

For eye-tracking, researchers typically rely on ixation data extracted from the raw data to measure cognition. A
ixation is deined as a spatially-stable eye-gaze that lasts for 100-300ms [76]. Most processing of visual information
happens during ixations [48], and begins at the start of the ixation, according to the immediacy assumption [48].
By calculating the amount of ixations, or the ixation count, and the time span of these ixations (i.e., ixation
duration), researchers can roughly measure humans’ cognitive efort and information processing [76]. Humans
also make rapid eye movements or large jumps in their visual ield, called saccades, which typically last for 40-50
milliseconds. There is little cognitive processing that occurs during saccades [67], so researchers use ixations to
investigate cognitive load and visual attention patterns [75]. Humans will occasionally ixate on an area they
have previously seen. These regressions occur when participants review prior information, and also indicate
higher cognitive efort [75].
There are also more complex eye-tracking metrics, such as the scan path, that ofer insight into deeper

cognitive patterns in humans. A scan path is simply an ordered sequences of ixations, but it reveals the order
in which humans process information [76]. By nature, the scan path as an ordered sequence is suitable for
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interdisciplinary analyses. For instance, researchers have used an algorithm for comparing DNA sequences
to study the similarities between scan paths [19, 26, 54]. In Software Engineering, researchers have applied
depth-irst search to scan paths from requirements comprehension [74], and have used edit distances to measure
the similarity between programmer scan paths (i.e., reading strategies) [28]. In this paper, we treat participants’
scan paths like documents in the context of Natural Language Processing (NLP), where there are contingencies
between consecutive words. To study programmers’ strategies for code summarization, we analyzed patterns of
consecutive semantic categories (i.e., N-Grams) in participants’ scan paths. In addition to scan paths, we analyzed
ixation counts and durations, as well as regressions to compare both facets of code summarization: reading code
with a pre-written summary, and reading code to generate one.

2.2 Code Summarization and Comprehension

Code summarization is a complex cognitive task where programmers must synthesize distant pieces of code into
a cohesive summary [70]. Previous research has studied humans as they write code summaries [4, 5, 69, 70], but
the automation of this process is also an active area of research [89]. Automating this process is challenging
because of the numerous (and fascinating) deviations of source code from natural language [70].
Researchers initially attempted to treat source code as natural language, and applied text summarization

techniques to code [38, 57]. However, there is not a one-to-one mapping between łwordsž in code and words in
natural language. Researchers revised their approaches and attempted to ind the key words or phrases within
code that summaries should include [70, 82]. Rodeghero et al. used eye-tracking in this context to measure
where 10 human developers looked in the code as they wrote summaries[70]. In studying where programmers
focus, those researchers primarily considered method declarations, the method body, control low elements, and
method calls. They found that programmers look more closely at the method header than the method body, but
do not focus more on method calls or control low elements. Abid et al. conducted a similar eye-tracking study
to Rodeghero et al., where 18 student developers summarized Java methods in an IDE [5]. These researchers
examined programmer attention on these same four categories, inding that programmers look more at the method
body than the method declaration, focusing their attention on method calls and control low elements. Based on
these slightly diferent interpretations, it is unclear whether programmers attend more to the method declaration
or the method body. In this study, we compared human attention between two diferent code summarization
tasks, and considered 19 semantic categories in an attempt to uncover more nuance.

To improve automated source code summarization, Rodeghero et al. designed their study to investigate where
programmers focus as they summarize code, and then incorporated this information into an automated model [68,
70]. We hope to similarly inform today’s state-of-the-art methods for automated code summarization. Recently,
Deep Learning techniques have proliferated to automate code summarization, with top-performing models using
Transformers [8, 86]. These models typically perform well by incorporating structures of the code, such as call
graphs [11] or AST’s [46, 51], into the training process. Thus, in this study, to further explore programmers’
attention patterns and inspire future AI design for code summarization, we conducted an exploratory analysis by
mapping the scan path onto the AST, and compared this with traditional metrics on the raw code (Sec. 5.2).

3 STUDY DESIGN

To investigate student programmers’ attention patterns during both facets of code summarization, we designed
our experiment to include two conditions: Reading andWriting.
Reading: participants were given code with pre-written summaries, and asked to evaluate the summary

quality.
Writing: participants read Java methods and generated their own summaries.
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Every participant completed both conditions, all while their visual behavior was recorded using eye-tracking.
In the remainder of this section, we discuss participant recruitment, the study materials used in the task (i.e.,
Java methods, eye-tracking), the task design, and the experimental protocol.

3.1 Participant Recruitment

Participants were recruited from Vanderbilt University and the University of Notre Dame to take part in the
experiment. The two R1 universities are comparable in terms of CS curricula, and both teams obtained IRB approval
at their respective institutions. The same recruitment procedure was followed in both locations, where students
were invited to participate via in-class presentations, lyers, class forum posts, and mailing-list advertisements.
To be included in the experiment, programmers needed to be at least 18 years old, have taken Data Structures or
the equivalent, have at least one year of experience with Java, and no history of epileptic seizures [2]. In total,
we recruited 29 undergraduate and graduate Computer Science students across Vanderbilt University (n = 19)
and the University of Notre Dame (n = 10). All participants were compensated $60 at both institutions. Due
to protocol error in one case and a software malfunction in another, data from two participants was excluded,
leaving 27 participants’ data in the inal dataset. Of the 27 participants, the average age was 23.81, 8 were women,
15 were graduate students, and 14 spoke English as a irst language. Select demographic information for these 27
participants included in the inal dataset can be found in Table 1.

Table 1. Demographic Information of the participants in our final data sample. During data analysis, participants were
separated into three groups based on their programming experience in years.

Demographic Number of Participants

Gender
Men 19
Women 8

Expertise
<= 4 years 10
5 - 6 years 8
>= 7 years 9

Program
Undergraduate 12
Graduate 15

3.2 Study Materials

In this section we discuss speciics related to the origin of the Java methods, as well as the eye-tracking hardware,
software, and setup.

Java Methods The Java methods and associated summaries used in this study originate from the publicly
available FunCom dataset of 2.1 million Java methods collected from open source projects [11, 52]. This dataset
has been used, iltered, and reined in previous research [10, 39], and we continue this lineage using a sample of
205 methods used in prior human studies [12, 39]. For this study, we indented and formatted these 205 methods
according to Java coding conventions [58]. To it the screen constraints, we omitted methods that either exceeded
26 lines of code, or contained lines of code that wrapped onto the next line. The inal dataset after cleaning based
on these characteristics consisted of 162 Java methods. Before iltering, the average method length in the dataset
was 12.37 lines of code (�=4.72), with an average line length of 27.38 characters (�=27.25). In terms of cyclomatic
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complexity, methods in this pre-iltered dataset had an average complexity of 2.53 (�=1.59), where each count is
the number of linearly independent paths through a method.
After iltering, the average method length in the dataset was 11.72 lines of code (�=4.26), with an average

line length of 26.52 characters(�=26.31). The average method complexity in our inal sample was 2.59, with a
standard deviation of 1.56. The shortest method was 5 lines of code, while the longest was 26 lines of code. The
simplest methods had a complexity of 1, and the most complex method in our sample had a complexity of 11.
Method summaries ranged from 3 to 13 words long (i.e., łrefresh tree panelž), with an average of 8.29 and a
standard deviation of 2.78 words. These methods were randomly assigned to either the Reading condition or
Writing condition, ensuring each method could only be used for one condition (i.e., methods used in the Reading
condition were not reused in the Writing condition). With data collection for eye-tracking in mind, we ensured
the selection of Java methods follows the best practices in Software Engineering for participant fatigue, as well
as constraints for hardware and software [76].

Eye-tracking Eye-tracking data was recorded using a Tobii Pro Fusion eye-tracker mounted on a 24" computer
monitor (1920x1080 resolution) with a refresh rate of 60Hz [2]. The eye-tracking model is accurate down to
0.1ś0.2in on the screen (0.26ś0.53cm). We developed a task interface to run locally using Python Flask that
presented Java methods and recorded participant input. An example of which can be seen for both conditions
in Figure 1. To record eye-tracking data, we integrated the Tobii-Pro Software Developer Kit into the task [1].
The Java methods were presented at font size 14, without syntax highlighting. To improve data quality for
eye-tracking, participants were asked to wear contact lenses instead of glasses when applicable. We ensured the
materials and methodology were consistent across both institutions, and followed a script when interacting with
participants.

3.3 Task Design

We used a within-subjects experimental design: each participant completed both the Reading and the Writing
conditions, but whether a participant started in Reading or Writing was randomized. The entire pool of 162 Java
methods was randomly split between Reading and Writing, so participants would see a given method in only
one context. For each experimental session (i.e., for each participant), 65 Java methods of the 162 were randomly
selected and presented. Methods were presented as stimuli, where each stimulus consisted of one method and a
summarization task speciic to that condition (i.e., writing a summary, rating a pre-written summary). Of these
65 stimuli, 40 were presented in Reading, and 25 in Writing.
To maximize both the variety and amount of eye-tracking data collected with respect to our stimuli, we

purposefully ensured that 60% of the stimuli were seen among all participants, while the other 40% was taken
from the larger pool (reserved for that condition). Before we began collecting eye-tracking data, we randomized
which stimuli comprised the 60% seen by all participants, and which made up the larger pool from which the
remaining 40% was sampled for each experimental session. During the experimental sessions, the order in which
the stimuli were presented was also randomized. In total, 89 Java methods were covered in the Reading condition,
of which 24 were seen by everyone. In the Writing condition, 67 Java methods were covered, with 15 of those
being seen by every participant. Thus, 156 of the 162 methods were covered during data collection.
Three breaks were built into the task, both for participants to rest, and for the researchers to recalibrate the

eye-tracker (for data quality). There was no time limit for breaks. Participants were notiied of breaks via łrestž
slides built into the interface. These were placed in the following locations: one halfway through the Reading
condition, one in between the two conditions, and one halfway through the Writing condition. For example, if
participants started with the Writing condition, they would irst complete 13 stimuli, take a break, then inish the
remaining 12. Before starting the Reading condition, they would take a second break. Now in Reading condition,
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(a) Example Reading Stimulus

(b) Example Writing Stimulus

Fig. 1. Example stimuli used in the task. In both conditions, the code was displayed on the let, and the summaries, pre-writen
or participant generated, were located in the top right. In the Reading condition, Likert-scale questions for assessing summary
quality were presented on the right below the pre-writen summary.

participants would inish 20 stimuli, then take their third break. They would then inish the remaining 20 stimuli
of the Reading condition.
In the Reading condition, participants were shown Java methods on the left side of the screen and the

corresponding summary in the upper-right. Likert-scale questions were located below the pre-written summary.
For Writing, a text box for participants’ summaries was located in the upper right of the screen. Example stimuli
can be seen in Figure 1. Pre-written summaries in the Reading condition were either human-written and from
the original dataset of Java methods from open source projects [52], or generated via Deep Learning [11, 39]. We
discuss quality control for these summaries below. To ensure that this summarization task was treated as a code
comprehension task, participants were given four Likert-scale questions for each stimulus requiring them to
closely read both the summary and the code. Questions 1ś3 were previously validated [39], while the fourth
was added for the purposes of this current study. The questions were on a scale of 1ś5, ranging from Strongly
Disagree to Strongly Agree, and based on the following criteria:
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(1) Summary accuracy.
(2) Whether the summary is missing information.
(3) Whether the summary contains unnecessary information.
(4) Summary readability.

Quality Control The quality of pre-written summaries could potentially inluence programmer attention on the
code, so we removed data associated with egregiously low quality summaries. The summaries were previously
validated as well [11], but we implemented further checks to bolster the data quality for the current study.
Speciically, using a 1ś5 scale, we excluded data from summaries that had an average score of 4 or greater for
questions (2) and (3) above, and an average score of 2 or below on questions (1) and (4). In other words, we removed
data associated with pre-written summaries if, on average, participants agreed it was missing information and
contained unnecessary information, and disagreed that it was accurate and readable. In total, data associated
with 4 pre-written summaries was removed.

Likewise, participant-written summaries that do not match the code indicate poor comprehension. Here we
assume that participants formed mental models of the code based on information they saw. If participants’
understanding of a method was malformed, this may be relected in their eye-tracking data as well. While we
wanted a variety of comprehension types and skill levels within the dataset, we also sought to ensure that the
eye-tracking data represents a base level of comprehension. For example, we excluded eye-tracking data from a
summary that included łto be honest, I am not entirely sure what this function is doing." Two of the authors on
this paper therefore rated and subsequently iltered participant summaries using the same Likert-scale questions
mentioned above [25]. The two researchers (8 years Java experience, 5 years Java experience) irst rated every
participants’ summaries independently. The researchers then resolved any rating conlicts together (i.e., a valence
mismatch: Agree/Disagree, Strongly Disagree/Agree, Neutral/Agree), obtaining an IRR of 1 [53]. Using these
ratings, eye-tracking data associated with 5 participant summaries was excluded. Informally, if we consider one
participant’s eye-tracking data for one stimulus as a single data point, the inal dataset contained 996 samples for
the Reading condition, and 661 samples for the Writing condition. We discuss how this eye-tracking data was
analyzed to compare both forms of code comprehension in Section 4.
Statistical Power Using the efect sizes of results in previous research as a guideline [78], we evaluated the

statistical power of data collected in this study. Sharif et al. conducted a study with 15 participants, comprised of
undergraduate and graduate students, as well as two faculty members. That study used a within-subjects study
design, and reported small to moderate Cohen’s � efect sizes, with a minimum of 0.15, a maximum of 0.57, and
an average efect size of 0.27. In this study, we used a within-subjects design for comparing between Reading
and Writing, and a between-subjects design for comparing based on diferent demographics. Using G-Power,
we calculated that we would need 150 total data points in comparing Reading and Writing to obtain suicient
statistical power to detect the average efect size of 0.27 with an alpha of 0.05 [32]. In other words, we would
need at least 75 samples in both conditions. As previously mentioned, we obtained 996 samples for the Reading
condition, and 661 samples in the Writing condition.

For analyzing diferences between groups based on demographic factors, we would need between 68 samples
(�=0.15) and 963 samples (�=0.57) in both groups, or 298 samples in both for an efect size of 0.027. In this study,
we compared participants based on years of experience, gender, and native language. For expertise, we did not
include all participants’ data in our analyses, and instead split the participants into three groups, only comparing
between participants with the lowest amount of experience with those with the highest. Based on our sample of
students, we considered participants novices if they had 4 years of experience or less (�=10), and experts if they
had more than 7 years of experience (�=9). We excluded data from the middle group in our comparison to yield a
starker contrast between experts and novices. For the Writing condition, we obtained 215 and 242 samples from
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experts and novices, respectively. In the Reading condition, we collected 336 and 370 samples from experts and
novices, respectively.

Our sample is suiciently powered for comparing based on gender and native language, but is not ideal due to
other characteristics of the dataset. For gender, only one woman in our sample is in the expert group, and with
respect to native language, only two native English speakers are in the expert group. To ensure that the samples
were not biased towards experts, we excluded all experts in our analyses comparing student programmers based
on gender and native language. We collected 270 samples from women (�=7) in the Reading condition, and
174 samples in the Writing condition. From men (�=11), we collected 390 samples in the Reading condition,
and 272 samples in the Writing condition. Next, we compared between native English speakers (�=12) and
non-native English speakers (�=6). From the former, we collected 460 samples for Reading, and 295 for Writing.
From the latter, we collected 200 samples for Reading, and 151 for Writing. As an additional consideration, the
remaining non-native English speakers represent 5 other languages, which may introduce additional variables in
the comparison. We nonetheless analyzed these factors to explore potential diferences and understand their
inluence on the larger dataset, and present preliminary analyses based on gender and native language in Section
5.4.

3.4 Experimental Protocol

Programmers were recruited to take part in the experiment via in-class presentations, lyers, forum posts, and
mailing list advertisements. Individuals who contacted the researchers completed the consenting and prescreening
processes electronically (the experimental session was in-person). After programmers gave their consent, they
completed a prescreening questionnaire to ensure they were eligible for the study. Individuals were eligible for
the study if they were at least 18 years old, had taken Data Structures or the equivalent, had at least one year of
Java experience, and no history of epileptic seizures [2]. In addition to this, we gave programmers a prescreening
question to test their basic Java understanding, following previous work [11]. We asked them to briely describe
the purpose of an obfuscated Java method (i.e., in-order tree traversal). All participants included in the current
study met our eligibility criteria and wrote accurate descriptions.

Participants completed the summarization tasks in-person, in an oice with natural lighting. At the beginning
of each experimental session, participants completed a pre-task survey containing questions related to age,
gender, native language, and classes taken. The pre-task survey was limited in scope to reduce any priming
efects [56]. The researcher would then give participants scripted instructions for the experiment and calibrate
the eye-tracker using Tobii Pro Eye Tracker Manager [2]. The eye-tracker itself may have introduced observer
bias, where participants might change their behavior knowing their gaze was being recorded [84]. While a certain
amount of experimental bias is unavoidable [21], we as researchers attempted to minimize observer bias by
leaving the room while participants completed the task. Participants were instructed to alert the researcher once
they reached the breaks (Sec. 3.3). After each break, the researcher recalibrated the eye-tracker.
After inishing the experimental session, participants completed a post-task survey. The post-task survey

asked participants about their preferred coding languages, coding experience, and personal criteria for high
and low-quality summaries. Experimental sessions lasted about 90 minutes. The summarization tasks alone (i.e.,
Reading, Writing, breaks) lasted roughly 75 minutes.

4 DATA ANALYSIS

In this section, we discuss the methodology used for data preprocessing and analysis. Our overarching goal
through this process was to extract the semantics of what programmers read during code summarization tasks.
To accomplish this, we decomposed the problem into the following steps:
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(1) Map participants’ eye-tracking data to the Java code on the monitor. We achieved this via bounding boxes

around each token in the methods.
(2) Assign all tokens in the Java methods to semantic categories. We developed a strategy for this based on

prior literature and the semantics of Java, and used ASTs.
(3) Calculate eye-tracking metrics with respect to these semantic categories and the ASTs.

Bounding Boxes Raw eye-tracking data consists of x and y coordinates on the screen, as well as time stamps for
these gaze points. However, this does not indicate what participants actually read at a given moment. For our
purposes, we sought to map these x and y gaze coordinates to tokens in the Java methods. To accomplish this,
we calculated the pixel-coordinate boundaries, or bounding boxes, of each token on the screen [37]. To generate
these bounding boxes, we irst captured screenshots of each of the Java methods, then used the opencv-python
library to compute the contours and coordinates of the tokens within the images. Because these were images,
information about the actual code within the bounding boxes was lost at this stage. To recover information about
the code, we used the easyocr library to identify the characters within each bounding box. The output from
optical character recognition did not always align with the original code, so we used the difflib library to
match predicted strings with the closest token in the original code. Finally, the researchers did a manual pass to
ensure strings associated with bounding boxes matched tokens in the original code.
In many cases, the same tokens appear multiple times in the same method. For instance, consider the line of

code ‘int n = n + 1’. Here, we need a means of diferentiating the irst occurrence of ‘n’ from the second, both
to specify which token a programmer was examining, and to assign the appropriate semantic categories. In these
cases, we notated repeated tokens with incremented numbers. Based on our implementation, the tokens in the
above example would be notated as int.0, n.0, =.0, n.1, +.0, 1.0. After this process with the bounding
boxes was complete, we could localize participants’ gaze coordinates to tokens on the screen, but we still lacked
semantic information for the code they read.

Semantic Categories and Abstract Syntax Trees Using bounding boxes, we could determine programmers
read Token A more than Token B, but informally, is Token A a variable? Is Token B involved in exception
handling? To draw broader conclusions about where programmers focus during code summarization tasks, we
still needed generalized semantic information for tokens in the Java methods (Sec. 3.2). To obtain this information,
we abstracted tokens according to their AST context and assigned them to semantic categories. Speciically, we
used srcML to parse Java methods into ASTs [22], then recursively walked through the trees to derive tokens’
structural context. For example, each of the four tokens in the line String s = ‘hello world’ would be labeled
‘variable declaration’ because these are children of ‘declaration statement’ and an ‘initialization’ nodes, according
to srcML’s parsing. Initially, each token could be classiied as one of 25 categories, which are listed in Table 2 (we
discuss how this was reduced to 19 below, and further iltered in Section 5.1). We formulated these categories by
referring to Chapters 1ś6 of a standard Java textbook [71], and show an example of these semantic categories in
Figure 2.

In some cases, multiple labels might apply to a single token. For example, consider the irst line of code from
Figure 2:
public void genSql() throws PositionedError. In this line, ‘void’ is part of the method declaration, but
it is also the return type. Similarly, ‘genSql’ is in the method declaration, but it is also the method name. To
resolve these label conlicts, we created an order of precedence as shown in Table 2. In these conlicts, a token
would be given the abstract label with the higher precedence (i.e., method declaration for void, genSql based
on our criteria). Informally, we emphasize that this list is not absolute, and may be reined in future work, but
was designed for our purposes in the current study based on the semantics of Java [71].
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Fig. 2. For a Java method in our dataset, assigning tokens to semantic categories based on their context in the Abstract
Syntax Tree. All semantic categories can be found in Table 2. Punctuation was not analyzed.

This order of precedence was decided based on prior literature [5, 14, 70] to achieve high granularity while
preserving meaningful semantics. For example, the pair of tokens ‘ref.getFile()’ in Line 4 of Figure 2 consists
of an externally deined variable followed by a method call, but it is also an argument. We contend that ‘argument’
is a more meaningful semantic category for this pair of tokens, considering their context within the method [59].
Previous code summarization research examines the method declaration, control low elements, and method
calls, so these semantic categories were given higher priority in our list of precedence [5, 70]. We also note that
higher precedence does not always mean higher importance. For instance, ‘Comments’ are given a high position
on the list that may be counter intuitive. However, whereas labeling a token ‘Loop Body’ or ‘Variable Name’ may
be debatable, a comment is unambiguously a comment. In addition, the list is relative in that some categories do
not conlict with one another (i.e., ‘Return’ and ‘Method Declaration’).
We inspected return statements and values because prior code comprehension research demonstrates the

relevance of program output for programmers’ attention [14]. Furthermore, parameters, arguments, and variables
were given higher precedence to gain insight into how the output evolves throughout the method [15]. To
summarize, we originally considered 25 semantic categories for each token, but after settling label conlicts using
this order of precedence, only 19 unique labels remained. We further iltered these categories based on where
participants focused most, and provide more details in Section 5.1. After this process was complete, we obtained
generalized semantic information for tokens in the Java code. At this stage, we could both localize programmers’
gaze to tokens in the code, and link this to broader semantic information about the code. The next step in the
analysis was calculating eye-tracking metrics with respect to these semantic categories.

Eye-tracking Metrics To compare human attention during both facets of code summarization, we analyzed
eye-tracking data with respect to the semantic categories detailed above. We use the following metrics in our
comparison:

• Fixations: Researchers use ixations as a proxy to measure cognition [76], but ixations irst need to be
distinguished from saccades within the eye-tracking data. Fixations are spatially-stable eye-gazes, whereas
saccades are rapid eye movements during which little cognitive processing happens [67]. Current algorithms
for discerning ixations from saccades rely on the velocity of the eye-movement [60]. If an eye-movement
exceeds a certain threshold, it is considered a saccade. Following best practices in our implementation of a
Velocity-Threshold Identiication (I-VT) algorithm [16], we classiied a gaze point as a saccade if it exceeded
400px/100ms. We both counted the gaze points identiied as ixations, and calculated their average durations.
Our purpose for using these ixation counts and ixation durations was to measure diferences in
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Table 2. The list of categories considered for each token in the code, with a count of their occurrences within our dataset.
Multiple labels may apply to one token. For these conflicts, the token was given the label with higher precedence (i.e., higher
priority based on previous research). We originally started with 25 categories, but only 19 remained ater labeling conflicts
were setled. For example, ‘Return Type’ and ‘Method Name’ were always superseded by ‘Method Declaration.’

Precedence Category Amount in Dataset

1 Comment 78
2 Method Declaration 465
3 Parameter 349
4 Return 362
5 Conditional Statement 807
6 Exception Handling 197
7 Loop Body 650
8 Conditional Body 461
9 Variable Declaration 937
10 Argument 601
11 Variable Name 126
12 Method Call 277
13 External Class 59
14 External Variable/Method 216
15 Assignment 74
16 Operation 16
17 Literal 9
18 Operator 16
19 Index Operation 1
NA ‘This’ Keyword 0
NA Assignment 0
NA Type 0
NA Return Type 0
NA Method Name 0
NA Constructor Call 0

programmer attention between the Reading and Writing conditions. To this end, we compared cumulative
ixation counts and durations between both conditions, and also compared ine-grained diferences related
to the semantic categories. We performed statistical tests, namely Welch’s �-Tests corrected for multiple
comparisons, between ixation data from both conditions, and between experts and novices. These results
are detailed in Sections 5.1 and 5.4.

• Scan Path: The scan path, or the ordered sequence of ixations, is informative of deeper cognitive pro-
cesses [75, 76]. To develop our understanding of human attention and cognition during code summarization
tasks, we replaced raw tokens in the scan path with their semantic categories, giving us abstract scan paths.
For example, the raw scan path in Figure 3 contains the sequence printCUnit −→ SqlcPrettyPrinter

−→ spp. The corresponding abstract scan path would be Method Call −→ External Class −→ Variable

Declaration. Thus, by creating abstract scan paths, we could examine generalized patterns of programmer
attention during code summarization tasks. We explored these patterns using analyses inspired by NLP,
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treating the abstract scan paths as documents. Speciically, we calculated the most common sequences
within participants’ abstract scan paths using N-Gram analyses, which we describe in Section 5.2.

Fig. 3. An illustration of one participant’s scan path through the genSql method. The actual scan path is shown below the
code, with colors matching those of the arrows above. The abstract scan path is also shown, which illustrates the participant’s
flow of atention between semantic categories. The genSql method is the same method depicted in Figure 2.

We also leveraged the scan path to explore another, novel representation of programmer attention
during code comprehension. To provide some background, previous research has measured the distances
between programmers’ consecutive ixations [19], noting that experts typically look farther. In the current
study, we implemented a similar distance metric to measure the clustering of programmer attention during
code summarization tasks. However, whereas prior research measured these distances in the raw gaze
coordinates, we measured these as distances between nodes on the AST. We then compared these distances
with those on the raw code. Previous research used Euclidean distance, but our measure on raw code is
based on the order of the tokens within methods to make an equivalent comparison with the AST distances.
For example, consider again the irst line of code from Figures 2 and 3, with notations of the token order:
(1)public (2)void (3)genSql (4)throws (5)PositionedError.

In this example, the absolute distance in raw code between ‘(1)public’ and ‘(4)throws’ would be 3.
The Java methods in our dataset were not uniform in length, so the distances between consecutive ixations
in larger methods may be farther than those in shorter methods. Likewise, a far jump in a shorter method
may appear relatively minor in a larger method. For this reason, we normalized scan path distances based
on the farthest possible distance per method, and separately for the raw code and ASTs. We used these
normalized distance metrics to compare code reading patterns between both facets of code summarization
and between experts and novices, which we describe in more detail in Sections 5.3 and 5.4.

• Regression: Prior research deines regressions as backwards movements in the text [19], and we follow the
same deinition in the current study with respect to code. That is, if participants look from Token A to Token
B, and Token B is located earlier in the method, we consider that a regression. Regressions in eye-tracking
data are informative of code reading patterns [19] and indicative of greater cognitive efort [76]. We use
this metric to explore both cognitive efort and code reading patterns related to code summarization tasks
in the current study. We report details about regressions in Section 5.2.
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5 EXPERIMENTAL RESULTS

In this study, we analyzed diferences between two code comprehension tasks using both facets of code summa-
rization: reading code with a pre-written summary, and reading code to generate one. Accordingly, we frame our
investigations with the following research questions:

• RQ1. How do attention patterns compare between code comprehension tasks: reading code with a pre-
written summary, and reading code to generate one?

• RQ2. Does the comprehension task inluence programmers’ sequences of attention between semantic
categories?

• RQ3. What can we learn about code comprehension by mapping gaze data onto another representation of
code (i.e., the AST)?

• RQ4. Do experience and other demographic factors mediate programmers’ attention patterns during code
comprehension tasks?

5.1 RQ 1: Comparison Among Summarization Tasks

In the current study, student programmers completed an experiment testing both facets of code summarization:
reading code with a pre-written summary, and reading code to generate one. We used eye-tracking to compare
these two forms of code comprehension, irst considering cumulative diferences in time taken and eye-tracking
metrics. Second, we calculated diferences in programmer attention on semantic categories.

5.1.1 Cumulative Diferences. When we looked at the time these programmers spent reading just the code in
the two conditions, we found that participants read each method for longer in the Writing condition compared to
the Reading condition (� < 0.0001), averaging 26.54 seconds and 11.64 seconds per method, respectively. Moreover,
we found that participants had higher ixation counts when writing summaries compared to when they were given
summaries (� < 0.0001), averaging 94.92 ixations and 38.99 ixations on the code in each method, respectively.
This suggests undergraduate and graduate programmers invest more time and efort in understanding the code
when they generate their own documentation. We found this trend for ixation durations as well, where each
ixation on the code was longer, on average, when participants wrote summaries (0.11s) compared to when they
were given a summary (0.1s). However, the diference did not reach statistical signiicance (� = 0.06).

5.1.2 Trends in Gaze Behavior. Total ixation counts and durations are informative, but we next sought to
determine whether similar trends could be seen between participants based on the method characteristics. To
explore this question, we used linear regression to analyze how eye-tracking metrics are afected by cyclomatic
complexity. That is, do ixation counts or durations increase, decrease, or stay the same as code complexity
increases? For each method, we calculated both the mean ixation counts for all participants who encountered it
in the task, and their mean average ixation durations for that method. To then compare results between Reading
and Writing, and between ixation counts and ixation durations, we normalized the eye-tracking metrics to be
within 0 and 1. The results are shown in Figure 4, but we can see in all cases that the slope (�) is positive, meaning
ixation counts and durations increase as a function of code complexity. Participants’ average ixation durations
increased more drastically than the counts for both Reading (� = 0.008) and Writing (� = 0.028), suggesting that
the more complex methods elicit more focus and cognitive load from student programmers. In addition to the
steeper slope for ixation durations in Writing, we can also see that the �-intercepts (�) are higher for Writing
(�=0.36, �=0.293) compared to those in Reading (�=0.266, �=0.257). This suggests the baseline level of cognitive
load in the Writing condition is higher than that in the Reading condition. These results are intuitive, and lay a
foundation for more detailed comparisons we conducted between conditions and demographics.

5.1.3 Semantic Categories. Next, to form a ine-grained understanding of programmer attention in both
summarization tasks, we considered ixation counts and average ixation durations on the semantic categories.
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(a) Slope = 0.001, �-Intercept = 0.266 (b) Slope = 0.008, �-Intercept = 0.257

(c) Slope = 0.003, �-Intercept = 0.36 (d) Slope = 0.028, �-Intercept = 0.293

Fig. 4. Linear regression results calculated between eye-tracking metrics and method complexity. Specifically, we used
cyclomatic complexity and considered its efect on fixation count in Reading and Writing, depicted in subfigures (a) and
(c), and averaged between participants. In subfigures (b) and (d), we fit a line between cyclomatic complexity and average
fixation durations, averaged between participants. In all subfigures, each datapoint represents averaged metrics across
participants for one method. To compare slopes and intercepts between the two conditions and metrics, we normalized the
fixation counts and durations to be within 0 and 1.

Notably, we had 19 semantic categories for the tokens, but not every method contained all 19 categories. We thus
concentrated our analyses on the categories where programmers focused the most in the Reading and Writing
conditions.
Inspired by the measurement of term importance in NLP, we calculated the weight (W�� ) of each semantic

category (��), separately for the two conditions, based on participants’ abstract scan paths and the frequency of
semantic categories therein. Informally, the weights here represent how frequently a semantic category received
attention from programmers. The weights were calculated as follows, where we irst concatenated the scan paths
for each method,�� :
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�� (� ∈ {1, 2, . . . ,�}) (1)

where � is the number of methods for a condition (Reading (� = 89) or Writing (� = 67)), and from each
participant, ��, � , who engaged with method�� in the experiment:

��, � ( � ∈ {1, 2, . . . , �� }) (2)

where �� is the number of participants who engaged with method �� . Because of task randomization, �� ∈

{1, 2, . . . , 27}. For method�� and participant ��, � , the symbol ���, � refers to the participant’s scan path for that
method. From here, we collected all scan paths ��� , which is a collection of all ���, � speciic to method�� from all
participants:

��� = {���,1, ���,2, . . . , ���,�� } (3)

Thus, the total set of scan paths for all methods from all participants in either Reading or Writing can be denoted
as �� :

�� = {��1, ��2, . . . , ���} (4)

For each method�� , we calculated the weight���,� for each of the 19 semantic categories (��), by irst totaling
the occurrences of all semantic categories (��� ) in scan paths ��� :

��� =

19︁

�=1

� � ��� ∈ ��� (5)

For each semantic category �� , we calculated its weight (���,� ) within method�� as a ratio, where the numerator
is its occurrences (��� ) in all scan paths for �� (i.e., ��� ). The denominator is the occurrences of all semantic
categories (��� ) within method�� . The log term measures the number of scan paths (��� ) in which the semantic
category �� is present, slightly scaling the irst term based on the category’s rarity:

���,� =
���

���
× log

(

|�� |

1 + |{��� ∈ �� : �� ∈ ��� }|

)

(6)

This formula would give a scaled measure of semantic category ��’s prevalence in scan paths ��� for method�� .
The inal weight for each semantic category W�� was then obtained by averaging its weights across all methods:

W�� =
1

�

�︁

�=1

���,� (7)

To determine a subset of categories to consider for our analyses, we used the average weightsW�� , reported in
Table 3, and cross-referenced the categories with previous literature. We found that the top 8 semantic categories
for both conditions include those reported by previous research, while also reining their classiication. Speciically,
prior code summarization research referenced the importance of the method declaration, method body, method
calls, and control low elements [5, 70]. Meanwhile, code comprehension research has noted the impact of
elements that contribute to code complexity on neurological activity [62], suggesting these might receive more
attention.

In our list in Table 3, we see these top 8 semantic categories for Reading and Writing contain those previously
described in the literature, while also expanding upon them. We therefore used these top 8 semantic categories
and considered the subset of Java methods containing these categories in subsequent analyses. The semantic
categories we considered were the following: variable declaration, method declaration, conditional statement,
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parameter, method call, argument, conditional block, and loop body. Concentrating on this subset yielded eye-
tracking data from 15 methods, totaling 2,850 eye-tracking data points. We note that choosing this subset involved
a degree of subjectivity despite our best eforts, and discuss this further in Section 7.

Table 3. Weights for each semantic category based on where participants focused most (i.e., frequency in scan paths).
The frequency for each semantic category was scaled by its frequency in scan paths from all methods. Not every method
contained all 19 semantic categories, so we examined the subset of methods containing the top categories (those in bold).

Semantic Category Reading Writing

Variable Declaration 0.287 0.247
Method Declaration 0.264 0.251
Conditional Statement 0.226 0.236
Parameter 0.201 0.205
Argument 0.196 0.186
Method Call 0.170 0.167
Conditional Block 0.152 0.151
Loop Body 0.147 0.150
External Variable/Method 0.118 0.112
Return 0.106 0.136
Exception Handling 0.086 0.115
External Class 0.085 0.066
Variable 0.063 0.041
Comment 0.047 0.089
Assignment 0.030 0.035
Operator 0.025 0.007
Index Operation 0.007 NA
Operation NA 0.018
Literal NA 0.014

To compare ixation metrics between the conditions, Reading and Writing, we used the subset of methods
containing these top semantic categories. Previous research highlights the impact of control low complexity
on attention and cognition [5, 62], so we investigated conditional blocks and loop bodies separately. We scaled
ixation counts based on the condition, Reading or Writing, because participants had higher ixation counts in the
Writing condition. By contrast, we left the average ixation durations unaltered since this aggregate statistic is
consistent across both conditions. We used Welch’s �-test to compare ixation metrics because some samples had
equal variance with their counterparts, while others did not [29]. We also performed FDR correction for multiple
comparisons, and report the corresponding q-values.

Comparing the two conditions then, we ind that programmers writing a summary have higher ixation counts
on parameters (t = 3.09, d = 0.5, p < 0.01, q < 0.05) and method calls (t = 2.8, d = 0.46, p < 0.01, q < 0.05). We
ind that on average, programmers writing a summary ixate for longer on parameters (t = 4.1, d = 0.66, p <

0.0001, q < 0.001), variable declarations (t = 3.23, d = 0.52, p < 0.01, q < 0.01), and method calls (t = 2.28, d =

0.37, p < 0.05, q < 0.05). This illustrates that programmers focus signiicantly more on parameters, method calls,
and variable declarations to understand the code when writing a summary. We can contextualize these indings
using participants’ post-task survey data. We asked participants łWhen writing a code summary, what are 1-3
details of the code you think are the most important to write about?ž Out of 27 participants, 18 mentioned either
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parameters or inputs, and 5 mentioned a description of how the inputs change. We see this pattern relected in
their eye-tracking data, where programmers pay particular attention to elements associated with the input. We
further discuss the implications of this in Section 6.
Interestingly, when participants were given pre-written summaries, we ind they had comparatively higher

ixation counts but lower ixation durations on method declarations, variable declarations, conditional statements,
and arguments. None of these diferences rise to the level of statistical signiicance. However, this suggests
programmers do not expend as much efort to understand these semantic categories when documentation is
present.

5.1.4 Loops. Next, we considered only the subset of methods within our larger subset that contain loops (9
methods, 1,482 data points). Intriguingly, we ind that participants do not focus more on the body of the loop
itself, but focus more intently on other components of the code. Speciically, in the Writing condition, participants
had even higher ixation counts on parameters (t = 4.48, d = 1.16, p < 0.0001, q < 0.001), and method calls (t =
3.77, d = 0.98, p = 0.001, q < 0.01). This trend is more pronounced for ixation durations, where participants again
ixate for longer on parameters (t = 5.4, d = 1.39, p < 0.0001, q < 0.0001), and method calls (t = 4.54, d = 1.11,

p < 0.0001, q < 0.001). All values for these comparisons, and those in the previous section, can be found in Table
4.

Using ixations as a proxy for cognitive load, we see that student programmers devote more efort to under-
standing parameters and method calls when loops are present. This may be attributed to programmers tracing
the program inputs through the methods and evaluating how they change. This appears to be more diicult
when loops are present. As before, this hypothesis is further supported by participants’ post-task survey data
where 18 out of 27 mention the importance of parameters and inputs, and 5 mention the importance of describing
how inputs change.

Table 4. Diferences in Fixation Counts and Average Fixation Durations between the two conditions, Reading and Writing.
Fixation counts are normalized per condition. Comparisons are also shown for only methods that contain loops. Average
fixation durations are an aggregate metric, and are therefore not normalized. (*p < 0.05, **q < 0.05, ***q < 0.01, ****q < 0.001)

Subset of Methods Subset of Methods with Loops

Category Metric Reading Writing Delta Reading Writing Delta

Method Declaration
Fixation Count 0.078 0.052 0.026 0.077 0.063 0.014

Fixation Duration 0.053 0.060 0.007 0.057 0.056 0.001

Parameter
Fixation Count 0.027 0.053 0.026** 0.013 0.064 0.051****

Fixation Duration 0.031 0.066 0.035**** 0.015 0.081 0.066****

Variable Declaration
Fixation Count 0.107 0.095 0.012 0.127 0.112 0.015

Fixation Duration 0.086 0.140 0.054**** 0.120 0.129 0.009

Conditional Statement
Fixation Count 0.065 0.041 0.024 0.068 0.050 0.018

Fixation Duration 0.052 0.073 0.021 0.052 0.053 0.001

Method Call
Fixation Count 0.026 0.061 0.035** 0.017 0.097 0.080***

Fixation Duration 0.026 0.041 0.015* 0.015 0.058 0.043****

Argument
Fixation Count 0.027 0.020 0.007 0.036 0.038 0.002

Fixation Duration 0.030 0.035 0.005 0.031 0.054 0.023

Loop Body
Fixation Count 0.081 0.114 0.033

Fixation Duration 0.090 0.125 0.035
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5.1.5 Conditional Blocks. We next considered only methods of the larger subset that contain conditional
blocks to study the impact of this control low element on programmer attention (6 methods, 1,052 data points).
Here, we ind that participants have slightly higher ixation counts in the Writing condition on the conditional
blocks themselves (t = 2.19, d = 0.82, p = 0.041, q = 0.15), and method calls (t = 2.39, d = 1.018, p = 0.03, q = 0.15).
Looking at ixation durations when conditional blocks were present, we see that participants ixated for longer in
the Writing condition on variable declarations (t = 3.43, d = 1.48, p < 0.01, q < 0.05), conditional statements (t =
2.33, d = 0.91, p < 0.05, q = 0.08), and conditional blocks (t = 2.25, d = 0.69, p < 0.05, q = 0.07).

In calculating cyclomatic complexity, both loops and standard conditional blocks increase the program complex-
ity. However, we ind that these two semantic categories have divergent impacts on human attention; conditional
blocks do not intensify programmer attention to the same degree as loops do. We discuss this in Section 6 as
well, but we found this interesting in the context of a recent study into the neural correlates of code complexity.
Speciically, Peitek et al. found no correlation between an increased cyclomatic complexity and brain activity [62].
Based on our results, it is possible that these two semantic categories have diferent efects on cognition, even
though a loop and an if-statement have an equivalent impact on cyclomatic complexity.

Student programmers focus more intently on parameters, variable declarations, andmethod calls when writing
their own code summaries. In the post-task survey, 18 of 27 participants mention the importance of inputs or parameters
in a good code summary. We also examined the inluence of complexity on human attention, and ind that loops intensify
programmers’ focus on parameters and method calls. Conditional blocks have a lesser impact.

5.2 RQ2: Paterns of Atention Sequences

From results in the previous research question, we have a better understanding of what semantic categories
students focus on in both facets of code summarization: reading code with a pre-written summary, and reading
code to generate one. However, code comprehension is a complex cognitive task where programmers relate
disparate parts of code to one another [38]. We cannot explore sequences of attention by measuring only where
programmers focus most.
To then study programmers’ deeper cognitive patterns during code comprehension tasks, we analyzed pro-

grammers’ abstract scan paths from both code summarization conditions, Reading and Writing. Scan paths can be
quite long, and therefore inconsistent between participants and diicult to interpret [76]. As an alternative means
of studying scan paths, we used analyses inspired by NLP to calculate common sub-sequences within them. We
treated participant scan paths as documents, and calculated the most common transitions (i.e., N-Grams) partici-
pants made between semantic categories. Speciically, we calculated the most common bigrams and trigrams,
composed of two and three consecutive semantic categories, respectively. The most common bigrams are depicted
in Figure 5. To illustrate bigrams within an abstract scan path, we can consider the following sequence: Method
Call −→ External Class −→ Variable Declaration. Example bigrams would be Method Call −→ External

Class, and External Class −→ Variable Declaration. Based on our implementation of semantic categories,
adjacent tokens on the same line of code may be classiied as the same semantic category. We excluded bigrams
and trigrams that contained repeat categories to better understand transitions between categories.

Whereas the ixation data accentuates diferences between Reading and Writing, here we ind high agreement
between them. We also ind a high rate of vacillation, where student programmers frequently look between the
same two semantic categories. For instance, participants looked most frequently from method declaration −→

variable declaration (Reading: 1585, Writing: 2593). We then see the reverse with the second highest frequency:
variable declaration −→ method declaration (Reading: 1530, Writing: 2533). This coupling pattern continues
for the next two transitions on both tasks, where participants frequently looked from conditional statement −→

loop body (Reading: 802, Writing: 2179), then the opposite (Reading: 765, Writing: 2189). Next, in both conditions,
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participants frequently looked from conditional statement −→method declaration (Reading: 717, Writing:
1615), then back (Reading: 714, Writing: 1588) (Fig. 5). Supporting these results, we also ind a high rate of
regressions in participant scan paths. We counted a regression every time a participant looked backwards in
the code at a token that came previously. In the Writing condition, 47% of transitions in the scan path were
regressions. In the Reading condition, 45% of these transitions were regressions.

(a) Writing Bigrams

(b) Reading Bigrams

Fig. 5. Bigram Frequency representing common gaze transitions between semantic categories during theWriting and Reading
Conditions.

The ixation data alone suggests that attention patterns can be inluenced by the summarization condition,
but we see that some broader code reading strategies are remarkably consistent between the two conditions.

ACM Trans. Softw. Eng. Methodol.



A Tale of Two Comprehensions? Analyzing Student Programmer Atention during Code Summarization • 21

Upon closer inspection of Table 4, we see that method declarations and variable declarations have the highest
ixation counts and ixation durations in both conditions. However, the diferences between conditions are not
signiicant. Programmers may commonly look between these categories to understand the relationship between
the method declaration and the method body. These results, and the high rate of regressions, may also clarify the
difering interpretations reported in previous studies on students and professional developers [5, 70]. Speciically,
it is unclear whether programmers focus more on the method declaration or the method body. In the current
study, inspecting ine-grained semantic information in scan paths, we ind that programmers commonly vacillate
between them. Based on the current indings, it may be more meaningful to consider the connections between the
method header and the method body. We also note the prevalence of conditional statements in the most common
transitions. Again considering cyclomatic complexity, we ind evidence that control low elements act as a sink
for programmers’ attention as they read code. We note that our participant sample consists of undergraduate and
graduate students, and may not generalize to professional developers, which we discuss further in Section 7.
We also calculated the most common trigrams, or transitions between three semantic categories for the

Reading and Writing conditions. Regardless of the condition, participants most frequently looked from variable

declaration −→ method declaration −→ parameter (Reading: 109, Writing: 171). Participants diverged from
here, depending on the condition. For the Reading condition, the next two most frequent trigrams were method
declaration −→ parameter −→ variable declaration (90), and parameter −→method declaration −→ variable declaration
(67). In the Writing condition, the second most frequent trigram was method declaration −→ conditional statement
−→ conditional block (146), followed by parameter −→ method declaration −→ variable declaration (138). We again
see the importance of variable declarations to programmer attention in both conditions, which was previously
unreported. These results also suggest that programmers seek to relate variables within the method with the
parameters entering the method. These trigrams also have lower frequencies compared to the bigrams, which
suggests the high variability between participants’ reading strategies.

Comparing both facets of code summarization, student programmers consistently look between the same semantic
categories, with a high rate of vacillation. Student programmers most commonly look between themethod declaration

⇄ variable declaration, followed by conditional statement⇄ loop body, and conditional statement⇄method

declaration.

5.3 RQ3: Human Atention on the Abstract Syntax Tree

In this study, we examined patterns of human attention to compare two forms of code comprehension. So far, we,
along with prior research, have only considered human attention on raw code, but Java has a rich underlying
structure, the Abstract Syntax Tree (AST). Exploring human attention on the AST ofers another avenue through
which we can study and understand code comprehension. While programmers may not interpret the AST directly,
they may implicitly comprehend some of the information therein. For instance, ‘parameter list’ nodes in the
AST specify the parameters and their types for the compiler. A human developer can infer the parameters from
looking at contextual clues in the source code, without looking at the AST. In this study, we considered the
reading distance that programmers traveled from one token to the next. We used distance to measure the general
clustering of programmer attention during both code summarization tasks. Using the previous example about
parameter lists, if programmers focus intently on elements of a parameter list, the distances between consecutive
tokens will be smaller than if they frequently switch their attention from parameters to return statements, for
example.
Previous code comprehension research measured the Euclidean distance between consecutive ixations [19].

We implemented a similar distance metric, but analyzed consecutive tokens in the scan path. That is, we calculated
the distance from one token to the next as two nodes on the AST. We also compared these AST distances to raw

ACM Trans. Softw. Eng. Methodol.



22 • Zachary Karas, Aakash Bansal, Yifan Zhang, Toby Li, Collin McMillan, Yu Huang, Zachary Karas, Aakash Bansal, Yifan Zhang, Toby

Li, Collin McMillan, and Yu Huang

code distances, as described in Section 4. We measured the AST distances between consecutive tokens in the
scan path using Breadth-First Search, and calculated the raw code distances using the tokens’ order within the
methods. As mentioned, the Java methods in our dataset were not uniform in length, which may inluence both
the AST distances and raw code distances. To generalize both of these distance metrics, we normalized each
distance by the farthest possible path in its method, and separately for raw code and ASTs. We should note that
in the previous research question, we analyzed abstract scan paths, but here we considered scan paths on raw
tokens.
After calculating AST distances and raw code distances using scan paths, we irst compared the two metrics

with one another to explore the relationship between the two. In other words, using the same scan paths, are
distances generally farther in the code, or farther in the AST? In total, we had 163,384 data points from raw
code distances and AST distances. Combining both types of distances, there were 56,500 data points in the
Reading condition, and 106,884 data points in the Writing condition. The data was not normally distributed, so
we used Mann-Whitney U-tests for our calculations. We did not correct the following statistical tests for multiple
comparisons because they were individual, isolated tests [3]. We ind that AST distances are signiicantly farther
than raw code distances (U = 869, 986, 484.0, d = 1.72, p < 0.0001), which may not be surprising considering the
verbosity of AST representations.

Next, to compare patterns of attention clustering between the two forms of code summarization, we analyzed
diferences between the two conditions, Reading and Writing. Looking at raw code distances, we ind that
participants looked farther, on average, between consecutive tokens in the Writing condition (U = 839, 092, 048.5,
d = 0.1, p < 0.0001). Surprisingly, when we compared both forms of comprehension using AST distances, we
found no signiicant diference (U = 910,543,439.0, d = 0.004, p = 0.745). This null result was unexpected and
may demonstrate the potential disconnect between human attention on these two representations of the same
code. As a possible explanation, we can re-examine the results from Section 5.2. To reiterate them here, we found
that regardless of the condition, participants made consistent patterns of attention sequences between semantic
categories. Perhaps student programmers look between equivalent semantic categories whose locations may
vary in the raw code. However, it is possible their locations are more stable in the ASTs. Regardless, further study
is needed to contextualize these results.

We examined the distances between consecutive tokens in participants’ scan paths using both AST and raw code
distances. We ind that AST distances are signiicantly farther than the latter. Comparing Reading and Writing, raw code
distances are farther between consecutive tokens when programmers write summaries. However, there is no signiicant
diference between the conditions in terms of AST distances.

5.4 RQ4: Diferences Mediated by Experience and Other Demographics

Software Engineering research regularly aims to identify factors diferentiating experts from novices [5, 33, 34, 47].
By isolating the efective behaviors of experts, we can ideally help guide novices toward these practices [79].
Accordingly, we conducted an in-depth comparison between experts and novices within our participant pool
of undergraduate and graduate CS students. We also present preliminary analyses based on gender and native-
language. We considered the top third, or tercile of our participants as experts (n = 9, >=7 yrs. coding experience),
and roughly the bottom tercile as novices (n = 10, <= 4 yrs.). We did not include the middle tercile of our
participants in our comparisons to make a clearer distinction between experts and novices. Following a similar
framework as previous sections, we irst present a comparison between the two groups based on their cumulative

diferences in time and ixations. We then compare how the two groups focus on semantic categories for both
conditions, Reading and Writing. We then examine diferences between the groups’ attention on the AST, and
conclude with comparisons based on gender and native language.
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5.4.1 Cumulative Diferences. To understand general diferences between novices and experts, we irst
compared the amount of time each group spent reading the code in both forms of code comprehension. We found
that experts spent an average of 7.66 seconds reading just the code in the Reading condition, compared to novices,
who spent an average of 14.3 seconds (� < 0.0001). In the Writing condition, we found experts spent an average
of 21.65 seconds reading just the code, whereas novices spent an average of 30.87 seconds (� < 0.0001). We ind
that novices spent almost double the amount of time as experts did when pre-written summaries were provided,
and about 40% more time when programmers wrote their own summaries.

Next, we compared the groups based on their ixation data, which followed the same trend. Novices had higher
average ixation counts (55.59, � < 0.0001) and durations (0.1, � < 0.0001) on each method in the Reading condition
compared to experts’ average ixation counts (23.56) and durations (0.06s). We see this pattern in the Writing
condition as well: novices had higher average ixation counts (106.61, � < 0.01) and durations (0.12s, � < 0.0001)
on each method compared to experts’ average ixation counts (81.69) and durations (0.09s). From these results
alone, it appears experts expend less time and efort to read the code, regardless of whether they are given a
pre-written summary or generating their own.

5.4.2 Semantic Categories. We next investigated where in the code the groups focus during in both facets
of code summarization. To this end, we compared experts’ and novices’ attention with respect to the semantic
categories during the Reading and Writing conditions. As before, we had 19 semantic categories, but not all
methods contained every category. We used the same calculations as those in Section 5.1 to focus on the semantic
categories that received the most attention: variable declarations, method declarations, parameters, arguments,
conditional statements, and method calls. This yielded data from 15 methods, and 396 eye-tracking data points.

The results are illustrated in Figure 6, and we also detail the notable indings here. Most strikingly, we see that
when programmers were given a pre-written summary, novices had higher ixation counts and ixation durations
for each of the categories we considered. However, when programmers wrote their own summaries, there were
no signiicant diferences between experts’ and novices’ ixation counts on these semantic categories. In fact,
when writing summaries, experts had higher ixation counts than novices did on arguments, but this did not
rise to the level of statistical signiicance. We note that these null results appear to conlict with those reported
above in Section 5.4.2. It is possible that the groups’ attention difered on other categories outside of our subset,
accounting for the signiicant diferences above in Section 5.4.2, and we discuss this in Section 7. With respect to
the igure, we also observe a general pattern where programmers had higher ixation counts when they were
given pre-written summaries (�������� = 0.067, �������� = 0.051), but longer ixation durations when they were
writing their own summaries (�������� = 0.044, �������� = 0.065). These diferences do not rise to the level of
signiicance (� = 0.36, � = 0.16, respectively), but are intuitive in that programmers may frequently look at certain
semantic categories if a pre-written summary is provided. However, they may not need to invest the same amount
of attention and cognitive efort as if they were writing their own summaries, as we can see from their ixation
durations.

Looking at results from each condition in more detail, we see in the Reading condition (Figure 6) that novices
had signiicantly higher ixation counts on variable declarations (t = 3.66, d = 0.98, p < 0.001, q < 0.01), parameters
(t = 3.21, d = 0.86, p < 0.01, q < 0.01), and conditional statements (t = 3.01, d = 0.81, p < 0.01, q < 0.01). In the same
condition, novices had signiicantly longer average ixation durations on variables declarations (t = 3.11, d = 0.83,
p < 0.01, q < 0.01), method declarations (t = 2.59, d = 0.68, p < 0.05, q < 0.05), parameters (t = 3.01, d = 0.80, p <
0.01, q < 0.01), conditional statements (t = 2.81, d = 0.75, p < 0.01, q < 0.05), and method calls (t = 3.35, d = 0.91, p
< 0.01, q < 0.01). In terms of where the two groups focused most, we see in the Reading condition that novices
ixated the most and for longest on variable declarations. By contrast, experts ixated the most (i.e., ixation
count) on method declarations, and the longest (i.e., ixation duration) on variable declarations. These results
suggest that when a pre-written summary is provided, experts can suiciently understand the code by focusing
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on the method declaration and variable declarations, perhaps focusing on beacons in the code that are key to
comprehension [27]. Novices, however, appear to expend more efort to understand internal components of the
methods. This is supported by our observation that novices ixated signiicantly more and for longer than experts
did on variable declarations and conditional statements.

As previously mentioned, when participants wrote summaries, there were no signiicant diferences between
the groups’ ixation counts on the semantic categories we considered (Fig. 6). We do see that novices ixated
for signiicantly longer on certain semantic categories: variable declarations (t = 2.45, d = 0.66, p < 0.05, q <

0.05), method declarations (t = 2.56, d = 0.72, p < 0.05, q < 0.05), parameters (t = 3.66, d = 0.97, p < 0.001, q <

0.01), and conditional statements (t = 3.61, d = 0.96, p < 0.001, q < 0.01). Interestingly, when participants wrote
summaries, we see that both groups attended most to variable declarations. These results together indicate that
when programmers are reading code to generate their own summaries, novices may still ixate for longer on
some semantic categories, but regardless of their expertise, programmers appear to devote similar amounts of
cognitive efort into reading the code.

5.4.3 Atention on the Abstract Syntax Tree. We next tested if we could uncover diferences between experts
and novices when we map their attention onto another representation of code, the AST. Following the same
procedure as above in Section 5.3, we calculated the distances between consecutive tokens in experts’ and novices’
scan paths. In total, we had 42,554 data points for the Reading condition, and 71,474 data points for the Writing
condition. Each distance measure was scaled per-method using the longest path in the tree, or farthest positional
distance in the raw code. Because the data is not normally distributed, we used Mann-Whitney U-tests to compare
between code distances and AST distances.
In the Reading condition and on raw code, novices looked slightly farther between consecutive tokens, on

average, than experts did (U = 55,473,559.5, d = 0.05, p < 0.001). However, in AST distances, there was no signiicant
diference between the groups (U = 56,630,433.5, d = 0.02, p = 0.22). In the Writing condition, this relationship
was lipped in both respects. Experts looked slightly farther between consecutive tokens in the raw code (U =

192,818,739.5, d = 0.001, p < 0.01), and this diference was magniied for AST distances (U = 201,802,465.5, d =

0.13, p < 0.0001). We see that mapping programmer attention onto the AST does not always have the same
outcome (i.e., more signiicant), and does not necessarily match attention patterns on raw code. In the Reading
condition, we see that AST distances are more muted than raw code distances, but they are more pronounced in
the Writing condition. These puzzling results may indicate that experts are more ixed and methodical in how
they read code, whereas novices may be more haphazard.

Previous studies may provide some insights. Researchers have examined code reading patterns, and in particular,
whether programmers focus on beacons in the code, or read code based on its execution order [19, 27]. A beacon
is a feature in the code that is key for facilitating comprehension of the program. Crosby et al. performed an
eye-tracking study, and found that novices do not discriminate between diferent areas of the code, while experts
tend to identify and focus on these beacons [19, 27]. Based on our study, it is possible that experts are drawn
to these beacons, regardless of the comprehension task. Researchers have also tested whether programmers
read code from one token to the next in a linear fashion, or if they read the code based on its low of execution.
Researchers hypothesize that experts read code closer to its execution order. That study reported that novices
actually read code closer to its execution order, but also notes that the code snippets read by novices in their
experiment were more linear by nature, which may have been a confounding factor. Based on these theories
for code comprehension, it is possible that more experienced programmers read code in a more structured way,
which may be observable in the AST.

5.4.4 Comparisons Based on Gender and Native Language. Our participants in this study were diverse in
terms of experience, gender, and native language. While our sample is suitable for comparing based on years
of experience, which we detail above, it is not ideal for comparing based on gender and native language. We
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(a) Reading: Fixation Counts (b) Reading: Fixation Durations

(c) Writing: Fixation Counts (d) Writing: Fixation Durations

Fig. 6. Comparison between experts’ and novices’ fixation counts (a, c), and fixation durations (b, d) during both conditions,
Reading and Writing. We initially considered 19 semantic categories, but not every method contained every category. We
therefore filtered the categories based on which participants focused the most (Sec. 5.1), and examined programmer atention
with respect to these. Fixation counts were normalized based on the condition, Reading or Writing, whereas the average
fixation durations were not. (*p < 0.05, **q < 0.05, ***q < 0.01, ****q < 0.001)

nonetheless conducted preliminary analyses based on these factors to understand their inluence on the dataset.
These results may lack generalizability, and warrant thorough validation in future study. For gender, only one
woman is in our expert group, meaning the men’s data is biased towards the experts. Similarly, 7 of the 9 experts
are in the non-native English speakers group. With an imbalanced sample, any signiicant diferences between
the groups may be attributable to the diferences in expertise, and not the variable in question [31]. We therefore
excluded all experts in comparing these groups.

After excluding experts, there was no signiicant diference between men (�=11) and women (�=7) in their years
of experience (�=4.5 yrs., �=3.5 yrs., respectively). Similarly, there was no signiicant diference between native
English speakers (�=12) and non-native English speakers (�=6) in their years of coding experience after excluding
experts from both groups (�=4.25 yrs., �=4.17 yrs., respectively). As an additional consideration, non-native
English speakers in our sample are heterogeneous in that they do not all share the same native language: these 6
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participants represent 5 other languages. Furthermore, in comparing based on native language, all participants
are students at R1 Universities in the United States, where admission is contingent on English speaking and
comprehension ability, and classes are taught in English. For both gender and native language, we present
preliminary results on cumulative ixations, ixations with respect to semantic categories, and distances in raw
code and on the AST.

Gender Analyzing diferences between men and women students then, we irst considered cumulative ixation
diferences. We found that women ixated with signiicantly higher frequency (52.35, � < 0.01) and for longer
(0.11s, � < 0.01) on code in the Reading condition, compared to men’s ixation counts (43.02) and average durations
(0.09s). In the Writing condition, by contrast, we see that men had signiicantly higher ixation counts (111.06, �
< 0.01) compared to those of women (90.5). Women had slightly higher ixation durations (0.123s) for the Writing
condition, compared to those of men (0.117s), but this did not rise to the level of statistical signiicance. These
results on cumulative ixations suggest diferences in how men and women read code, implying women invest
more attention and efort to understand the code when there is accompanying documentation. This is supported
by previous eye-tracking research in Software Engineering, where women were found to focus on all answer
options in a study on identiier style [77]. Here our results suggest that women spend more time and efort
checking whether code matches accompanying documentation.
This is not necessarily supported by our results comparing ixations on the top semantic categories, where

we found no signiicant diferences between men and women. This was true for both Reading and Writing,
and the subset of methods containing loops, and the subset containing conditional blocks. It may be possible
that diferences between men’s and women’s ixations relate to semantic categories we did not analyze in this
study. However, considering the potential inluence of demographics on the larger dataset, these results suggest
participants in both groups are similar in how they ixate on semantic categories of the code. Interestingly, when
we compared men and women based on the code and AST distances, men looked signiicantly farther for Reading
on both the raw code (U = 57,422,118.5, d = 0.046, p < 0.001) and the AST (U = 57640685.0, d = 0.046, p < 0.001). By
contrast, women looked signiicantly farther for Writing on both the raw code (U = 169,771,038.5, d = 0.057, p <

0.001) and the AST (U = 170,753,340.0, d = 0.055, p < 0.0001). Here we can see that the distances in both conditions
align with the ixation data, where women had higher ixation counts and durations in the Reading condition,
and shorter distances looked from one token to the next. In the Writing condition, men had higher ixation
counts, and looked shorter distances from one token to the next, compared to women. This suggests women
may read code more thoroughly when documentation is present, while men may read the code more closely
when generating their own summaries. This gender diference has not been previously reported in eye-tracking
research within Software Engineering [44, 77], and warrants further study to understand the basis for these
indings. Our preliminary results suggest that men and women comprehend code to diferent degrees, depending
on the circumstances.
Native Language In our analyses comparing native English speakers with non-native English speakers, we

irst considered cumulative diferences. In the Reading condition, we found that native English speakers’ average
ixations were signiicantly longer (0.11s, � < 0.01) compared to those of non-native English speakers (0.09s). That
being said, there was no signiicant diference in the groups’ ixation counts in Reading. In the Writing condition,
native English speakers had signiicantly higher ixation counts (113.27, � < 0.0001), on average, compared to
those of non-native English speakers (83.06), but there was no signiicant diference between the groups in their
ixation durations in this condition. Based on these results, we see a trend where native English speakers in the
sample invested more efort to read the code in both the Reading and Writing conditions. This is also supported
by results below related to distances looked on the raw code and on the AST. Similar to the comparison between
men and women, here we also found no signiicant diferences in where the two groups focus based on the top
semantic categories. This was also true for the subsets of methods with loops, and those with conditional blocks.
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These null results also suggest that native language does not inluence student programmers’ attention with
respect to the semantic categories.

While we did not ind signiicant diferences in terms of ixations on semantic categories, we found signiicant
diferences between these two groups in their average distances looked on raw code and on the AST. In the
Reading condition, we found that non-native English speakers looked signiicantly farther than native English
speakers did on both the raw code (U = 48,280,575.5, d = 0.041, p < 0.0001), and on the AST (U = 45,746,143.0, d

= 0.175, p < 0.0001). This was also the case in the Writing condition for distances on both the raw code (U =

138,773,451.5, d = 0.062, p < 0.0001) and the AST (U = 139,679,166.0, d = 0.067, p < 0.0001). From the cumulative
ixation results, we see that native English speakers tend to ixate more on the code, and the distances they look
from one token to the next are subsequently shorter. More research would be necessary to contextualize these
preliminary indings, but since code primarily uses English key words, it is possible that native English speakers
read code more linearly than non-native English speakers. This may contribute to the higher ixations, and the
shorter distances from one token to the next. If non-native English speakers are less familiar with the language,
perhaps they are less restricted in their reading patterns.

Novices spend more time and efort focusing on the code in both forms of code comprehension, attending the most to
variable declarations, method declarations, and conditional statements. We ind one caveat: when experts and novices
write their own summaries, there are no signiicant diferences in their ixation counts, at least on the categories we
considered. Mapping human attention onto the AST, novices look farther in the raw code when they are given a summary,
but this is not signiicant in terms of AST distances. Experts look farther in the raw code in the Writing condition, which
is even more pronounced in the AST distances. Preliminary results suggest women read code more thoroughly when a
summary is present, while men read code more thoroughly when generating their own documentation. In addition,
native English speakers ixate more on the code in both conditions. Preliminary results suggest demographic factors do
not inluence attention with respect to semantic categories.

6 DISCUSSION

Based on the results from analyzing the eye-tracking data, we present the following interpretations and future
directions. Speciically, we discuss and contextualize the results comparing these two forms of code compre-

hension (i.e., Reading and Writing), implications for eye-tracking methodology, and indings from mapping
human attention onto the AST.

6.1 Comparing Two Forms of Comprehension

We set out to understand the diferences between code comprehension tasks by looking at both facets of code
summarization, Reading and Writing. In this context, reading code to write a summary can be considered a more
active, generative process. Based on the ixation data, we consistently ind that writing a summary demands
more attention on the code from student programmers. We also see that writing a summary somewhat equalizes
experts and novices, where we ind no signiicant diferences in their ixation counts in the Writing condition on
the categories we considered. Comparing Reading and Writing more generally, we see student programmers
writing summaries will focus comparatively more on parameters (q < 0.001), variable declarations (q < 0.001), and
method calls (q < 0.001). To consider why these semantic categories diferentiate the two forms of comprehension,
we can look at what the programmers said themselves. Over 60% of our participants mentioned the importance
of inputs for understanding the overall purpose of a method. A smaller percentage mentioned the importance of
describing how inputs change throughout the method. We then see this trend relected in the eye-tracking data,
where programmers appear to focus on the input and how it changes. If a pre-written summary is provided, our
results suggest programmers do not need to follow these elements as intently, but follow the high-level features.
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Considering diferences between experts and novices more explicitly, we see from Figure 6 that these groups
generally align in where they focus (i.e., method declaration, variable declarations). Novices simply tend to focus
more on these categories. However, we consistently see across the conditions that novices attend signiicantly
more to conditional statements (q < 0.001). Perhaps experts are quicker to discern the meaning of conditional
statements, but it is also possible that a deep understanding of the conditions is not crucial for these comprehension
tasks. We note that the same would not be true if we were testing debugging tasks. In support of this, we asked
our participants in the post-task survey łWhat are 1-3 examples of unimportant details in the code that don’t
need to be mentioned in a code summary?ž Out of 27 participants, 5 mentioned the logic or conditions speciically.
For code summarization, these results together suggest that conditional statements are an area where novices
could save time and efort. Furthermore, our results have implications for tool design [6, 55], where static analysis
might give novices more context for the semantic categories where they focus most: variable declarations (q <
0.001), parameters (q < 0.05), conditional statements (q < 0.001), and the method declaration (p < 0.01).
The results based on ixations illustrate the diferences between these forms of code comprehension, but

looking at more complex patterns of attention reveals notable parallels between them. We see that regardless
of the condition, student programmers commonly vacillate between the same semantic categories. That is, in
both conditions, students commonly look between method declaration⇄ variable declarations, loop bodies⇄
conditional statements, method declarations⇄ conditional statements. It is somewhat unexpected that variable
declarations are so prominent in student programmers’ attention, especially since this semantic category has not
yet been reported in code summarization literature [5, 70]. Previous studies presented diferent interpretations as
to whether programmers focus more on the method declaration or the method body. Our results provide another
interpretation, where programmers in our sample commonly make connections between the method body and the
method declaration. This suggests the link between them is critical. Very informally, if we think of the method
name as a book title, the method body would be the story, and variables would be the main characters. In this
analogy, it is important to understand the role of the variables with respect to the method’s purpose. So can
we determine whether these forms of code comprehension are distinct? It appears there are nuances in where
student programmers’ focus, but stable consistencies in how they read the code.
Practical Implications In light of these indings, how can we beneit from a more nuanced understanding

of code comprehension? The implications can extend from CS education to model training for automated code
summarization, and tool design for IDEs. In this study, we see diferences in how students read source code,
depending on their purpose for doing so, and speciic strategies employed by more expert programmers. We
see an overarching story forming from the ixation data where students focus on how program inputs become
outputs, from parameters to variable declarations and method calls. This pattern is more pronounced when
students are summarizing source code themselves, which provides concrete evidence for educators to guide new
programmers’ attention to these components of methods on tasks requiring a deep understanding of the code. By
contrast, when students are reading code through the lens of a pre-written summary, our ixation and bigram
results suggest that they pay particular attention to method and variable declarations, perhaps just łskimmingž
or łcheckingž the high-level components of the code.
This can be informative for educators and tool design for IDEs alike, where programmers can be speciically

directed to these elements if they are forming a high-level understanding of documented code. Speciically,
these results suggest variable declarations and method declarations in particular should be contextualized for
student programmers reading code with additional documentation. For deep learning models, it is possible
that the (publicly available) gaze data from this study can be directly used to improve automated methods for
code summarization using human attention. Here we also see an opportunity for novices, where experts ixate
signiicantly less on conditional statements during these summarization tasks. If programmers need to form
a rapid understanding of a method, results from our experts suggest that a more cursory look at conditional
statements may be suicient. Though it does not rise to level of statistical signiicance, we also see that experts in
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our sample ixate comparatively more on arguments when they are writing a summary, suggesting the information
conveyed by arguments can be helpful for comprehension. Overall, results from this study ofer a precise look
at code comprehension behaviors in student programmers, and can be informative in situations where code
comprehension is taught, analyzed, and facilitated.

6.2 Eye-tracking Methodology

In this experiment, we relied upon the scan path in particular to study reading patterns during code summarization
tasks. Speciically, we leveraged analyses inspired by Natural Language Processing to expose patterns within this
ordered sequence of attention. Fixation data alone is informative, and can reveal details about where humans
focus. However, the scan path as a sequence of these ixations can elucidate deeper cognitive patterns [75].
Despite its potential, there are implicit challenges that come with analyzing the scan path. First and foremost,
scan paths can become quite long, and can vary widely between participants, becoming unwieldy and diicult to
interpret [76]. Previous studies have tackled this problem by comparing the similarity between scan paths as a
whole [19, 26], visualizing scan paths [68], and encoding the behavior of the developer at diferent time points in
the scan path (i.e., debugging, coding) [5]. In this study, we attempted to dissect and analyze the scan path by
taking advantage of the semantic categories.
By creating abstract scan paths based on the tokens’ semantic categories, we could examine generalized

patterns of attention within the scan path. The insight then came from treating these abstract scan paths as
documents, which then frames the analyses as Information Retrieval tasks in the context of NLP [80]. First, we
used this insight to calculate the categories on which programmers focus most in Section 5.1. We examined
the categories’ frequency in scan paths for one method, and compared this to their prevalence in scan paths
from all other methods. This may have been accomplished using raw ixation data, but an analysis for this
purpose is already typical in NLP [9, 65]. Second, in Section 5.2, we used N-Gram analyses to enumerate common
transitions programmers made between semantic categories. By using bigrams and trigrams, we could identify
the predominant clusters of student programmers’ reading patterns. While N-Gram analyses are usually an early
step in NLP tasks [18], we used them as a inal step to uncover sub-sequences within scan paths. Using these
foundational NLP metrics, we demonstrate the eicacy of treating scan paths as documents for Information
Retrieval. Moreover, because these metrics are foundational, this suggests exciting new directions for analyzing
the scan path using more advanced NLP techniques.

6.3 Human Atention on the Abstract Syntax Tree

In this study, we also explored human attention on an alternative representation of code, the AST. Human
programmers may not interact with the AST directly, but implicitly derive the same information (i.e., variable
types, arguments). Therefore, we can gather detailed information about programmer focus by considering their
visual attention in the context of the AST. We conceptualized this type of mapping as analogous to Fourier
transformation for audio, where a complex signal is disassembled and compressed into meaningful features. We
ind exciting and puzzling results, suggesting the potential for this type of mapping in future research. More
speciically, we ind inconsistent patterns between how far programmers look in the raw code, and how far they
look in the AST. First, in the Writing condition, students look signiicantly farther between consecutive tokens in
raw code, but not signiicantly farther in terms of AST distances. Second, comparing experts and novices in our
sample, we ind in the Reading condition that novices look farther between consecutive tokens in the raw code,
but not signiicantly so in the AST. The opposite is true for Writing, where experts look signiicantly farther in
the raw code, and even more so in the AST. We see that AST distances do not always match raw code distances,
which suggests that these two types of information are revealing, yet not necessarily equivalent.
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Previous research has examined programmers’ code reading order [19], as well as comprehension strategies:
bottom-up versus top-down [63, 85]. Those studies reported that experts read code less linearly, and may be
better with top-down comprehension [19, 63], where they form a preconceived understanding of the code based
on higher-level features [63]. There is a related vein of research into beacons in the code, which are features
that are key to comprehension [27]. Crosby et al. conducted an eye-tracking study and found that experts are
able to recognize these features, and subsequently focus more attention on them. By contrast, that study found
that novices’ attention is more distributed over the program. Based on those studies’ indings, it is possible that
experts read code in a more structured way, which may be observable on the AST. If experts do read code more
deliberately, this could perhaps explain why their AST and raw code distances agree in the Writing condition,
and why novice distances do not demonstrate an enduring pattern in the Reading condition.
Furthermore, prior research examined human attention during code summarization to inform and improve

methods for automated code summarization [70].We continue this trendwith the current study bymapping human
attention onto the AST. More speciically, current top performing models for automated code summarization
include structural information from the AST during training [46, 51, 83, 89]. In their study, Rodeghero et al. aimed
to align the output of automated methods with human priorities. In the current study, we aim to extend this by
measuring the paths programmers take through the AST as they perform code summarization tasks. We measured
the distance between consecutive tokens in the scan path to explore the clustering of programmers’ attention.
Subsequently, we ind intriguing initial results from comparing experts and novices and code comprehension
types. That being said, the raw AST may be limited as a vehicle for studying code comprehension. Using a
previous example, if programmers glance from a parameter to a return value, there will likely be intermediate
information in the tree that is unnecessary for understanding this attention switch from parameter to return.
Here, the programmers’ attention may represent a łshort cut" in the AST, which warrants more reined metrics
for studying code comprehension on the AST. Informative and perhaps limited, our results suggest fertile ground
for future research to explore other metrics of attention on the AST to better understand code comprehension.

7 THREATS TO VALIDITY

In this section, we consider potential threats to validity in our study. We primarily group these into two categories.
First, we discuss the possible limits to the generalizability of our indings, such as the use of Java and our
participants’ level of experience. Second, we discuss conceivable sources of noise and random efects, such as
running the study in two locations and the quality of pre-written summaries.

Generalizability There are a few factors that may limit the applicability of our indings more broadly. Here we
discuss our sample size, participants’ demographics, and the selection of the Java methods and their summaries.
First, we draw conclusions about student programmers at large based on the data from 27 participants. While
this sample may not be entirely representative, our participants are diverse in age, gender, native language
and experience. We also collected data from students at two universities. Furthermore, the quantity of data we
collected has suicient statistical power to conidently detect diferences between the comprehension tasks and
between experts and novices (relative within our sample). Related to this, we classiied programmers in our study
as novices if they had 4 years of programming experience or fewer (bottom tercile), and experts if they had 7 or
more years of experience (top tercile). Based on this criteria, our experts may still be relatively inexperienced.
Nonetheless, experts in our study were all graduate students, and we excluded the middle third of participants
from our comparison to give a sharper contrast between the two groups. The signiicant diferences found
between experts and novices in our sample might extend to even larger experience gaps in industry. However,
further study would be needed to validate the hypothesis. We also conducted preliminary analyses based on
gender and native language, but our sample was not ideally suited for this task due to the uneven distribution of
experts within these groups. We excluded experts from these analyses so that any signiicant diferences were
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not due to imbalances in expertise. We sought to explore the inluence of other demographics on our data, and
recommend future validation of these results.

Lastly, the selection of Java as our target language, and of the particular Java methods and associated summaries
we used, may inherently afect the generalizability of our indings. Speciically, the analyses on Java’s semantic
categories may not scale to other programming languages. By nature, the semantics of Java are similar to other
object-oriented programming languages, and we irst selected Java as our target language because of its prevalence
in CS education and real-world software projects [17, 23, 24]. However, further-study would be required to truly
test language-speciic visual attention. In addition, the summaries used in this study may not be a representative
sample of all summaries, which may have inluenced participants’ attention on the code. This was a consideration
for previous research [12, 39, 52], that sourced the methods from open source projects, and reined them for
research purposes, including automated code summarization and human studies. Next, our interface was designed
for the current study without elements like scrolling or syntax highlighting, and may therefore lack realism.
These decisions were consciously made for the beneit of other study factors, such as eye-tracking data quality.
Nonetheless, we attempted to improve our task’s generalizability by using the FunCom dataset, which consists of
real-world Java methods [52]. We sought to further increase the robustness of our collected data by presenting a
wide variety of randomized methods to our participants. Lastly, we asked participants in the Reading condition to
rate the quality of code summaries using Likert-scale questions, which would not likely be asked in a real-world
scenario. Even though programmers outside of an experimental setting may not explicitly assign values to the
accuracy and readability of a summary, for instance, they may be making these judgements implicitly.

Noise and Random Efects Next, we consider factors that may have had an unintended inluence on the study.
Here we discuss the two study locations, the content of the pre-written summaries, participants’ self-reported
experience, and decisions made during data analysis. For data collection, the human studies were run in two
separate locations, which may have led to slight diferences in how participants completed the tasks. Both
institutions are similarly-sized private universities and have comparable CS curricula, but we attempted to further
limit this possibility by synchronizing our experimental procedure and equipment. We used a script during
experimental sessions to ensure all participants received the same information in the same order. Researchers
also reduced observer efects by leaving the experimental room while participants completed the task, though
some efect may have persisted due to the presence of the eye-tracker.

Next, the quality of pre-written summaries in the Reading condition may inluence how programmers subse-
quently read the code. The summaries were previously used in human studies [12, 39], and in studies involving
automated code summarization [11, 52], but to further mitigate this risk, we implemented quality control checks
and removed data associated with egregiously low quality summaries. We implemented similar measures of
quality control for participant summaries, where data associated with low quality participant summaries was
excluded, as this demonstrates poor comprehension and may be relected in the gaze data. In addition, our results
may have been inluenced by decisions made during the analysis stage. For instance, we concentrated our analyses
on only a subset of the 19 semantic categories that we originally considered (Sec. 5.1), which could have caused
a streetlight efect [30]. In other words, we may have focused our search to the point where we ignored other
possibilities.

The consequence of this may be present in Section 5.4, where we found experts and novices had signiicantly
diferent cumulative ixation counts, but not with respect to the subset of categories we considered. Previous
research has found that novices’ attention is more distributed, which may have inluenced the cumulative
diferences in this study [27]. To curb the impact of this decision, however, we combined prior research with a data-
driven approach. Speciically, we ranked the semantic categories based on their frequency in programmers’ scan
paths, and cross referenced the top resultant categories with those examined by previous code summarization [5,
70] and code comprehension research [62]. Finally, we rely on participants’ self-reported measures of their
experience in making our comparison between experts and novices. We have no reason to believe participants
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were untruthful, but slight inaccuracies in reported expertise could conceivably add noise or outliers to our novice
or expert groups. This possibility was mitigated by only comparing the top and bottom terciles of participants,
and excluding the middle tercile from this stage of our analyses.

8 CONCLUSION

In this study, we used eye-tracking to compare two forms of code comprehension: reading code with a pre-written
summary, and reading code to generate one. To form a better understanding of code summarization in both
contexts, we analyzed the ine-grained semantics of where participants focused using 19 categories based on
the semantics of Java. We also examined common attention sequences between these semantic categories using
the scan path. Inspecting ixation data, we found that writing a code summary inluences where programmers
focus in the code, and for how long. Using scan paths, we found parallels between the two conditions in terms of
programmers’ attention sequences between semantic categories. Furthermore, to explore human attention on
another representation of code, we mapped participants’ gaze data onto the AST. We found that programmers’
visual behavior on raw code does not always match that on the AST. This disconnect between human attention
on raw code and the AST suggests the potential for further research into mapping human attention onto the
AST. Lastly, we found numerous diferences between novices and experts in their visual behavior during these
code comprehension tasks, where novices generally ixate more and for longer on the code, with some notable
exceptions. By analyzing human attention using ine-grained semantic information and the Abstract Syntax Tree,
we ind both consistencies and discrepancies between two forms of code comprehension.
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