
PredART: Towards Automatic Oracle Prediction of Object
Placements in Augmented Reality Testing

Tahmid Rafi
md.tahmidulislam.rafi@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

Xueling Zhang
xueling.zhang@rit.edu

Rochester Institute of Technology
Rochester, New York, USA

Xiaoyin Wang
xiaoyin.wang@utsa.edu

University of Texas at San Antonio
San Antonio, Texas, USA

ABSTRACT
While the emerging Augmented Reality (AR) technique allows a
lot of new application opportunities, from education and communi-
cation to gaming, current augmented apps often have complaints
about their usability and/or user experience due to placement er-
rors of virtual objects. Therefore, identifying noticeable placement
errors is an important goal in the testing of AR apps. However,
placement errors can only be perceived by human beings and may
need to be confirmed by multiple users, making automatic testing
very challenging. In this paper, we propose PredART, a novel ap-
proach to predict human ratings of virtual object placements that
can be used as test oracles in automated AR testing. PredART is
based on automatic screenshot sampling, crowd sourcing, and a
hybrid neural network for image regression. The evaluation on a
test set of 480 screenshots shows that our approach can achieve an
accuracy of 85.0% and a mean absolute error, mean squared error,
and root mean squared error of 0.047, 0.008, and 0.091, respectively.

KEYWORDS
Augmented Reality, Virtual Objects, Placement Error

ACM Reference Format:
Tahmid Rafi, Xueling Zhang, and Xiaoyin Wang. 2022. PredART: Towards
Automatic Oracle Prediction of Object Placements in Augmented Reality
Testing. In 37th IEEE/ACM International Conference on Automated Software
Engineering (ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3551349.3561160

1 INTRODUCTION
Augmented Reality (AR) is an emerging technology that allows soft-
ware users to view real-world scenes and objects with computer-
enhanced perceptual information [10]. There have been tens of
thousands of AR apps available for various AR devices (e.g., Android
phones with ARCore support [7], iPhones with ARKit support [2],
Hololens [3], Oculus [4]), and they have found numerous appli-
cation scenarios such as computer-aided manual operations (e.g.,
driving support [35], medical treatments [19]), navigation [41],
education [49], remote conference [27], and entertainment [38].
Compared with traditional GUI apps, AR applications can affect

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9475-8/22/10. . . $15.00
https://doi.org/10.1145/3551349.3561160

users’ daily lives in a deep and seamless manner, so bugs in AR
apps may lead to more severe consequences [51]. For example, the
misbehavior of an AR driving navigation app may cause immediate
damage to the physical world surrounding the users.

In AR apps, to enable experiences that make virtual content ap-
pear to be attached to real-world objects (e.g., surfaces such as tables,
floors, walls, or human faces), virtual objects are typically placed at
certain points (called anchors) [22] relative to the real-world objects
(called trackables) [22] identified by AR devices. However, bugs in
the applications and platforms, as well as limitations of existing
computer vision and sensoring techniques, may cause miscalcu-
lation of trackables’ positions and imperfect placement of virtual
objects. These will cause human users to feel the added virtual ob-
ject as being floating or misplaced. In certain cases, such placement
errors may even occlude real-world objects or other virtual objects,
leading to dysfunction or more severe consequences. To make sure
AR systems and apps meet users’ expectations, precision of virtual
object placement is an important measurement of AR applications’
usability during AR software testing [29]. In this paper, we refer to
the distance from a virtual object’s placed location at run-time to
its desired location (on the trackables) as its Placement Gap.

AR software testing is very difficult in real-world scenarios be-
cause it is typically infeasible to construct enough physical scenes
(e.g., various indoor rooms and outdoor settings under different
lighting conditions) to exercise AR apps. Therefore, frameworks
often provide virtual reality scenes for testing purposes. For ex-
ample, Figure 1 and Figure 2 show two virtual scenes provided
by GoogleAR [7] and Unity [6], respectively, for testing purposes.
Within virtual reality scenes, although a test script can automat-
ically move the camera to view different parts of the scene and
place virtual objects at different locations, the testing process is
still often manual because a human tester needs to either watch
the test execution or watch videos or screenshots recorded during
test execution to decide whether an object placement is noticeably
imprecise. Furthermore, as shown later in our dataset (section 4),
different users may have different feelings about the same object
placement gap, especially when the wrong placement is not far
from the proper position. Therefore, multiple human testers may
be required to acquire an unbiased and thorough understanding
of object placement accuracy in a test execution. Note that the
distance between the object placement position and the ground
truth position (which is often not accessible in physical scenes but
accessible in virtual scenes) may not be a good oracle, because
various factors such as the viewing angle, distance, and the object
size/character may have influence on whether an object placement
looks real or unrealistic.

https://doi.org/10.1145/3551349.3561160
https://doi.org/10.1145/3551349.3561160

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

Figure 1: Virtual AR Testing scene provided by Unity MARS

Figure 2: Virtual scene provided with Google ARCore

To reduce human effort and potential bias in the testing of object
placements, in this paper, we develop a novel technique, PredART,
to explore the feasibility of predicting whether the placement of an
object is noticeably imprecise according to human users. The pre-
diction results can be used for automatic assertions in AR software
testing and raise warnings to human testers only when a poten-
tial imprecise placement is found. Our research process follows
the general practice of design science [24] [59]. In particular, we
first analyzed the problem domain to find out that the judgment
of whether object placements are realistic relies on cognition from
multiple human users. Furthermore, we found that it is possible
to automatically move cameras in test scenes to generate a large
number of screenshots for the training and testing of deep learn-
ing models. Based on these observations, we designed our deep
learning-based solution in three major steps. First, we use a simple
virtual test scene and an automatic scene controller to create screen-
shots of virtual objects with different placement gaps from various
viewing angles and distances. Second, we send the screenshots to a
crowd-sourcing website (e.g., Amazon Mechanical Turk [9]) to ask
for multiple normal users to label each screenshot and calculate

a reality score based on the labels. Third, we train a deep image
regression model with the labeled screenshots together with their
recorded camera meta information and use the model for test oracle
prediction. The major challenge in the third step is that the image
forms a much larger feature vector than the meta information, so
off-the-shelf deep regression tools train a model dominated by the
image features. To address the challenge, we combine a convoluted
neural network (CNN) and a multiple-layer perceptron (MLP) to
construct a hybrid deep learning model, so that the two parts of
the features can be better balanced.

The goal of our solution is to achieve high accuracy in the predic-
tion of human judgements on object placements, and to outperform
state-of-the-art directly applicable learning models. The solution
should also be applicable in different scenarios. To evaluate whether
PredART achieves these goals, we studied the accuracy of PredART
by applying it to four test scenes from the Unity MARS Test Frame-
work [6] to explore the effectiveness of oracle prediction with deep
image regression. In particular, we randomly moved the camera in
the test scene, placed virtual objects on different surfaces, and col-
lected 480 testing screenshots. Then, we used Mechanical Turk [9]
to label them, and applied PredART to predict their user ratings as
test oracles. Our empirical evaluation has the following findings:

• PredART can achieve a Mean Absolute Error (MAE) of 0.047,
a Mean Squared Error (MSE) of 0.008 and a Root Mean
Squared Error (RMSE) of 0.091. PredART can achieve an
accuracy of 85.0% on predicting the average user ratings.

• PredART largely outperforms ResNet [23], the state-of-the-
art image regression technique, by 56.9 percentage points,
showing that the combination of CNN and MLP to balance
feature weights in a hybrid neural network is effective.

• The object type and scene have a minor influence on predic-
tion accuracy.

• PredART can still achieve an MAE of 0.101 and an MSE of
0.041 when performing cross-object prediction.

In sum, this paper makes the following major contributions:
• A novel method for predicting the reality of virtual objects
with placement errors that can be used as a test oracle in
augmented reality testing.

• A labeled public dataset1 for future research efforts.
• An empirical evaluation based on 480 screenshots taken
during a random exploration of four Unity Mars testing
scenes with three different virtual object placements.

The remainder of the paper is organized as follows. In Section 2,
we will introduce some background knowledge of AR Testing and
the techniques used in PredART. In Section 3, we will describe
the details of each step in our approach. After that, we present
our empirical evaluation results in Section 4, and discuss some
important issues in Section 5. Before we conclude the paper in
Section 7, we further summarize related works in Section 6.

2 BACKGROUND
In this section, we introduce the background knowledge of several
tools and techniques used in our research. Unity Mars is the testing
environment we target. Amazon Mechanical Turk is the platform

1Our dataset and scripts are all available at https://sites.google.com/view/predart2022

https://sites.google.com/view/predart2022

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

we use to label our dataset, and image regression, CNN, and ResNet
are techniques we leverage or compare to.

2.1 Unity Mars Test Framework
Unity [1] is a real-time 3D development platform that includes a
game-engine (Unity game engine) and an editor. It is used in a
variety of industries, including cross-platform game development
(mobile, PC/console, and AR/VR), automotive, transportation, and
manufacturing (design and prototyping), architecture, engineering,
and construction (engineering design, simulation), and film (ani-
mation, cinematic). Currently, there are multiple platforms for XR
development (ARCore [22], ArKit [2], Hololense [3], Occulus [4],
etc.) with their own unique implementations and device-dependent
sets of features, which introduces additional complexity for soft-
ware testing. As a cross-platform development tool, Unity provides
a superset of XR2 features in different package structures. To sepa-
rate platform and device-specific implementations from the core
game engine, Unity introduced a plug-in framework called the
XR plug-in framework [5]. This enables software and hardware
providers to develop their own Unity plugins to integrate with the
Unity engine and make full use of its features via a common API.
The XR plug-in framework exposes APIs for common function-
alities supported by Unity. These APIs are grouped into multiple
subsystems (Figure 3) (e.g., display, faces, image tracking, object
tracking, etc.), collectively called XR subsystems.

Unity introduced MARS (Mixed and Augmented Reality Subsys-
tem) in 2020 [37], which provides a suite of specialized AR software
tools to help developers author, test, and launch cross-compatible
AR apps [36]. Unity MARS provides extensive testing facilities for
app developers. The MARS basic environment simulation pack in-
cludes a variety of virtual scenes that mimic real-world settings in
indoor scenes (living room, bedroom, kitchen, dining room, and
office), large indoor scenes (museum, factory, and warehouse), and
outdoor scenes (park, and backyard). Unity MARS comes with sepa-
rate templates of pre-authored scenes and support scripts represent-
ing single use-case examples of Unity MARS features. The MARS
simulation system supports simulation of planes, body tracking,
facial landmarks, point clouds, and raycasting.

A MARS session contains a programmable ARCamera which
simulates the movement of a human user (called a MARS user)
inside the virtual scene. There are three ways the programmable
ARCamera can be controlled: 1) Connected Device—feeding move-
ment and position information from an actual device connected via
USB in real time; 2) Playables—playing back a pre-recorded motion
along a path inside a virtual scene; 3) Custom Script—moving in-
side the virtual scene on a pre-programmed path using a custom
ARPose driver script. Connected Device—feeding and Playables are
commonly used in regression testing with manual test cases, while
custom scripts can facilitate automatic testing. In our approach and
evaluation, we rely on custom scripts to automatically move the
camera and create the training set and the evaluation set.

2XR is an umbrella term that includes virtual reality, augmented reality, and mixed
reality.

Figure 3: Unity Platform Architecture

2.2 Amazon Mechanical Turk
Amazon Mechanical Turk [9] is a crowdsourcing website provided
by Amazon that allows individuals or organizations (called re-
questers) to outsource their processes and work to remotely located
workers who can perform the tasks online. The requesters post
tasks called HITs (Human Intelligence Tasks), which could include
anything from simple data labeling, such as identifying the content
in an image, to more subjective efforts such as filling out surveys,
summarizing texts, and fixing language errors. Amazon Mechani-
cal Turk provides worker filters for the requesters to choose only
qualified workers. Some common criteria include the number of
HITs being approved and the percent of HITs being approved. More
advanced filter criteria may further select a specific group, such as
females, senior citizens, or students. However, Amazon Mechanical
Turk does not provide any criteria on worker expertise, so tasks
that rely on common sense can be relatively well finished, while
tasks requiring strong expertise, such as software bug fixing, may
not be suitable for it. In this paper, we are using it to judge the
reality of virtual objects with placement gaps, which relies mostly
on intuition rather than expertise.

2.3 Image Regression, CNN and ResNet
Regression analysis is a statistical process that estimates the rela-
tionships between a dependent variable and a number of indepen-
dent variables, called features. Image regression is a technique to
predict a numeric value from an image. The basic difference be-
tween image classification and image regression tasks is the target
variable. In image regression, the target value is continuous, while
in image classification, the target value is discrete. For example, if
we need to predict house prices based on the images of houses, it
will be an image regression task.

CNN is a powerful neural network architecture mainly used for
both image classification and image regression. CNNs are regular-
ized versions of MLP, which usually mean fully connected networks.
In the fully connected network, each neuron in one layer is con-
nected to all neurons in the next layer. This characteristic of “full
connectivity” makes them prone to overfitting. Therefore, it needs
regularization to prevent it from overfitting. CNN takes advantage
of hierarchical patterns in the data points and assembles patterns
of increasing complexity by using smaller and simpler patterns
embedded in filters.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

ResNet [23], which was proposed in 2015, introduced a new
architecture called the Residual Network. In order to solve the
problem of the vanishing and exploding of gradient functions, this
architecture introduced the concept of a Residual Network. There
is a technique called skip connections in this network. The skip
connection skips the training of a few layers and connects directly
to the output. By allowing the network to fit the residual mapping,
it learns the underlying mapping instead of layers. ResNet is the
most popular neural network used in computer vision. It is able
to handle image inputs as well as additional meta information by
concatenating them to image features. In our paper, we use ResNet
as our baseline approach and propose a hybrid neural network
combining MLP and CNN to solve our specific problem.

3 APPROACH
As shown in Figure 4, our approach has three main steps. The
first step is the automatic generation of training screenshots, in
which we use an automatically moving camera to take pictures
of different virtual objects being placed with different placement
gaps. The second step is data labelling, in which we use Amazon
Mechanical Turk to have multiple users label the screenshots and
calculate their user ratings. The third step is deep image regression,
in which we use the labeled screenshots to train a hybrid deep
neural network combining CNN (Convolutional Neural Network)
and MLP (Multi-Layer Perceptron) network for prediction.

3.1 Creating Screenshots
Whether the placement of a virtual object is realistic depends on
various factors, e.g., distance, viewing angle, height of the observer
(represented as horizontal angle), and the dimension of the virtual
object itself with respect to the surrounding items. Therefore, we
need a dataset that exhaustively covers a wide range of values for
these variables. Therefore, our first step involves manually setting
up a testing scene with an object to be placed, and automatically
placing the ARCamera in different poses (positions and viewing
angles) with custom scripts. The screenshots are grouped into two
sets for deep image regression. These two groups served as the
training set and the test set.

For the first group of screenshots (training set), we consider a
basic indoor living room scene with only a table (Figure 5). We
choose an object model from a set of three models of different
sizes (small sized object—apple, medium sized object—table lamp,
and large sized object—chair) to be placed on a horizontal plane
(Placement Plane). The small and medium-sized objects are placed
on the tabletop plane, while the large-sized object is placed on the
floor plane. The objects are placed at varying placement gaps3,
ranging from −2 cm to 8 cm for small-sized objects, −4 cm to 8 cm
for medium-sized objects, and−4 cm to 10 cm for large-sized objects.
Positive and negative placement gap thresholds are chosen by trial
and error until the results are visually significantly imprecise.

For each object placed at a different placement gap, we use a
custom ARPose driver script to set the camera pose (position and

3Placement gap refers to the distance between the placement plane and the plane
parallel to the placement plane passing through the object’s bottom-most point, where
0cm means the object’s bottom-most point is touching the placement plane, negative
placement gap means the object is submerged into the placement plane, and positive
placement gap means the object is floating over the placement plane.

rotation). We consider the distance of the camera from the center
of the target object to be 2 ft and 4 ft for small and medium-sized
objects and 4 ft and 6 ft for large-sized objects. We choose these
distances because when using them, the placed object fits well on
the screen. For each combination of object, placement gap, and
distance, we then consider the horizontal viewing angle (with re-
spect to the horizontal plane) and the vertical viewing angle (with
respect to an arbitrary vertical plane). The horizontal viewing angle
is chosen from 20◦, 40◦, and 60◦, and the vertical viewing angle
is chosen from a range from 0◦ to 300◦ with 60◦ increment. Refer
to Table 1 for a detailed description of the combination of feature
values.

Given the position of the object and other feature values (place-
ment gap, distance, horizontal and vertical viewing angle), the
ARPose drive script calculates the position and rotation of the cam-
era by solving a spherical equation. For each camera position, Unity
renders a new frame and the ARPose driver script takes a screenshot
using Unity’s ScreenCapture API.

For the second group of screenshots (test set), we consider a
set of three indoor scenes (dining room, living room, and office),
one large indoor scene (factory/warehouse), and one outdoor scene
(backyard) as the test scene. Compared to the scenes used for the
first group of screenshots, the scenes used in this phase contain
more objects, making them closer to real scenes. Therefore, we can
also test whether a model trained in simpler scenes can be used in
more complicated scenes. We further use a pseudo-random number
generator to choose different feature values within a range.

Four different placement gaps are chosen for each scene and
object combination, ranging from −2 cm to 8 cm for small-sized
objects, −4 cm to 10 cm for medium-sized objects, and −6 cm to
12 cm for large-sized objects with a 1 cm increment step. Similarly,
for each scene, virtual object, and placement gap combination, two
different floating-point distance values are chosen from the range
of 1 ft to 5 ft for small and medium-sized objects, and from the range
of 3 ft to 8 ft for large-sized objects. For horizontal and vertical
viewing angles, we chose values ranging from 10◦ to 80◦ with 1◦
increment and from 0◦ to 359◦ with 1◦ increment step, respectively.

3.2 Data Labelling
Determining whether virtual object placement is realistic relies
on users’ perception. Therefore, screenshot labeling needs to be
done by multiple qualified and responsible users, and Amazon
Mechanical Turk is the most popular platform to support it. We
collect all of the screenshots and package them as HITs on Amazon
Mechanical Turk. For each HIT, we ask the worker to observe the
colored virtual object and choose one of two labels: realistic and
floating or cutoff. We do not use the term unrealistic because it may
mislead the worker to consider factors other than the placement
gap (e.g., the color of the object). To further help them, we give
example screenshots as shown in Figure 6, where virtual objects
are placed exactly on the surface, largely above the surface, and
largely below the surface, respectively. To make sure the workers
are qualified and responsible, we use the filter to select only workers
who have finished more than 10,000 approved HITs and have had
more than 98% of their finished HITs approved, according to an
existing guideline [40].

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Camera Driver
Scripts

Training Scene

Screenshots Mechanical
Turk

Virtual Objects

Labeled
Dataset Training Oracle

Prediction Model

Testing
Screenshots

Pass and
Failure Reports

Figure 4: PredART Overview

Table 1: Training Set Feature Description

Features Small sized object
(apple)

Medium sized object
(table lamp)

Large sized object
(chair)

Placement Gap −2cm / 0cm / 2cm / 4cm / 6cm / 8cm −4cm / −2cm / 0cm / 2cm / 4cm / 6cm / 8cm −4cm / −2cm / 0cm / 2cm / 4cm / 6cm / 8cm / 10cm
Distance 2ft / 4ft 2ft / 4ft 4ft / 6ft
Horizontal viewing angle 20◦, 40◦, 60◦
Vertical viewing angle 0◦, 60◦, 120◦, 180◦, 240◦, 300◦
Total # of combination 6 × 2 × 3 × 6 = 216 7 × 2 × 3 × 6 = 252 8 × 2 × 3 × 6 = 288
Total # of training screenshot 180 + 252 + 288 = 720

Figure 5: Automatically generated training screenshots (a)
a small object placed on table top plane at 4cm placement
gap, (b) a medium object placed on table top plane at 6cm
placement gap, (c) a large object placed on floor plane at 0cm
placement gap.

Table 2: # of screenshots generated for test data

Scene and object combination 12
Placement Gap 4
Distance, horizontal, and vertical
viewing angle combination 10

total 12 × 4 × 10 = 480

Judgment of realistic object placement can be difficult for some
screenshots, but we do not provide an intermediate option (e.g., not
very realistic) because wewant the workers to try their best to make
a decision instead of retreating to a simple intermediate option.
Instead, we use multiple (i.e., five in our experiment) workers and
average their votes to handle the controversial cases. For example,
a screenshot with unanimous realistic votes will get a label of 1.0,

Figure 6: An Exemplar HIT and Instructions

while a screenshot with only three realistic votes out of five will
get a label of 0.6. PredART uses a regression model instead of
a classification for prediction so that it is able to provide a user
rating as a test oracle not only when the object placement is clearly
realistic or unrealistic, but also when it is disputable among users.

3.3 Hybrid Image Regression
Once we have the labeled screenshots along with the other vari-
ables, i.e., horizontal angle, vertical angle, distance from the object,
dimension of the object, etc., the next challenge is to feed the data

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

to a machine learning model. As the screenshots have at least thou-
sands of pixels to be clear enough for human judgement, simply
concatenating the other variables as features will significantly un-
dermine their effects, resulting in a bias model. Therefore, a hybrid
method needs to be employed to achieve more sensible results.

In particular, tomake sure the feature vectors of the image (which
are high-dimensional) are not dominating over meta-information
features and to take advantage of CNN for image data, we developed
a hybrid neural network with the structure shown in Figure 7.

Numeric Features Image Feature

Convolutional
Neural Network

Multilayer
Perceptrons

Concatenation Layer

Outputs Lower Dimension
Outputs

Dense Layers

Single
Value
Output

Figure 7: Structure of the Hybrid Image Regression Model

From the figure, we can see that the neural network model uses
two separate networks to process numerical and image inputs. In
particular, PredART feeds the numerical features of screenshot
meta information (vertical viewing angle, horizontal viewing angle,
distance, and placement gap) into an MLP network. At the same
time, it feeds the screenshot as an image input into the CNN, which
generates lower-dimension output. The first branch (numerical fea-
tures) in particular accepts 32-d input, whereas the second branch
(image features) accepts 128-d input. These branches operate inde-
pendently of each other until they are concatenated.

To combine the features, we designed a concatenation layer
where the output of theMLP network (formeta information) and the
CNN (for image) are concatenated. With further dense layers, the
concatenated output is finally reduced to a single-dimensional value,
which is the final prediction output. The weights in the neural net-
work are randomly initialized. Neural networks are stochastic algo-
rithms. The model is compiled with "𝑚𝑒𝑎𝑛_𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒_
𝑒𝑟𝑟𝑜𝑟 " loss (which computes the mean absolute percentage error be-
tween 𝑦𝑡𝑟𝑢𝑒 and 𝑦𝑝𝑟𝑒𝑑) and an Adam optimizer [28] with learning
rate decay (Learning rate decay is a technique for training modern
neural networks. It starts training the network with a large learn-
ing rate and then slowly reduces/decays it until a local minima is
obtained. It is empirically observed to help both optimization and
generalization). To be specific, the MLP module contains 3 layers
, while the CNN module contains 5 layers with 3x3 convolution
kernels and padding size = 1.

4 EVALUATION
In this section, we present an evaluation of PredART on 480 screen-
shots taken from test scenes of the Unity Mars framework.

Figure 8: Automatically generated test set screenshot (a)
small object, red, misplacement: −1cm, distance: 3.5925ft, x-
angle: 12◦, y-angle: 287◦; (b) small object, green, misplace-
ment: 2cm, distance: 1.794ft, x-angle: 29◦, y-angle: 67◦; (c)
medium object, red, misplacement: 9cm, distance: 4.22ft, x-
angle: 28◦, y-angle: 50◦; (d) medium object, blue, misplace-
ment: 3cm, distance: 2.1555ft, x-angle: 11◦, y-angle: 348◦; (e)
large object, red, misplacement: −3cm, distance: 4.8533ft, x-
angle: 29◦, y-angle: 138◦; (f) large object, green, misplacement:
7cm, distance: 5.6611ft, x-angle: 11◦, y-angle: 122◦;

4.1 Research Questions
In our evaluation, we try to answer the following five research
questions.

• RQ1: Is it feasible to predict users’ reality judgements on
virtual objects with deep image regression?

• RQ2: Does our proposed hybrid deep neural network out-
perform the state-of-the-art image regression technique?

• RQ3: Do testing scenario-related factors such as test scenes
and virtual object types affect the prediction accuracy?

• RQ4: Is PredART able to perform cross-object prediction of
users’ reality judgement?

• RQ5: Is PredART able to detect unrealistic object placement
during testing of AR apps in Unity Mars virtual scenes?

For RQ1, we answer the basic question of how accurately PredART
can predict the realisticness of object placement. For RQ2, we com-
pare PredART with ResNet to find out whether PredART outper-
forms state-of-the-art approaches that can be directly applied to the
problem. ResNet [23] is a widely used, state-of-the-art model for its
superior performance over other popular CNN-based methods (e.g.,

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

VGG [53] and MobileNet [25, 34]). We chose ResNet-18 for a fair
comparison as it has comparable architectural parameter sizes. For
RQ3, we explore the applicability of PredART to find out whether
it can achieve similar accuracy in different scenarios. For RQ4, we
look into whether PredART can address a practical challenge (i.e.,
it is impossible to train a model with all of the virtual objects on
which it will make predictions). So, we evaluate PredART on cross-
object prediction tasks to find out its accuracy when the virtual
object in the prediction is unknown at the training phase. For RQ5,
we validate the practical usefulness of PredAT by checking whether
it can detect unrealistic object placements in the testing process of
real AR apps in Unity Mars virtual scenes.

4.2 Evaluation Configuration
The construction process of our testing set is described in Section 3.1
(generation of testing screenshots) and Section 3.2 (labelling ground
truth of the testing set), respectively. Figure 8 shows six screen-
shots in the testing set from different scenes, with different virtual
objects being placed and using different meta information for the
camera. Due to labelling budget and multiple labels required for
each screenshot, our data set is limited to 1,200 screenshots with
480 screenshots in the test set. However, our test set covers differ-
ent virtual objects, AR test scenes, misplacement values, angles,
and distances. Unity Mars has a limited number of built-in AR test
scenes, and thus taking more screenshots of the same scenes may
not be very helpful. We consider the dataset to be representative
because AR app developers are likely to use the built-in AR test
scenes. Therefore, our evaluation set is close to the actual data to
be used in AR app testing. We plan to expand our evaluation by
incorporating AR test scenes released in new versions of Unity
Mars and other popular open-source VR scenes that could be used
by AR developers in their testing.

To make sure our labeling is not largely affected by irresponsible
workers, we performed an outlier analysis [8] on the labels of the
testing set. In particular, if a worker chooses a label different from
all four other workers, the worker is considered an outlier for the
specific screenshot. Since the judgement of object placement can
be subjective, it is fine if a worker is sometimes an outlier. But if
a worker is often an outlier (close to 50% or higher), it indicates
unreliable labeling. We performed outlier analysis on the labels in
our testing set, and found only 36 out of 480 (7.5%) screenshots were
labeled by an (>30%) outlier (indicating theworker is an outlier more
than 30% of the time). Considering each screenshot is labeled by
five workers, the influence of potential unreliable labels is minimal.

We evaluate the model’s performance in two different settings.
In the first setting, we use all three objects’ screenshots to train the
model and predict realism values for all three objects’ screenshots.
In the second setting (cross-object setting), we use two of the objects’
screenshots during training and predict the realism values for the
third object. We then compare the predicted realism value 𝑦 with
the gathered label data 𝑦 as described in section 3.2. For ResNet as
the baseline technique, we use its default network structure in the
research paper [23] and directly concatenate numeric features and
image features.

4.3 Image Regression Metrics
In data regression, the commonly used metrics are mean average
error (MAE), mean squared error (MSE), and root mean squared error
(RMSE) [57]. The three metrics measure how predicated values
are different from ground truth values. The formulas for the three
metrics are presented as follows. In the formula, 𝑁 denotes the
number of data points, 𝑦 denotes the predicated value of each data
point, and 𝑦 denotes the ground truth value of each data point.

𝑀𝐴𝐸 =
1
𝑁

∑︁
|𝑦 − 𝑦 | (1)

𝑀𝑆𝐸 =
1
𝑁

∑︁
(𝑦 − 𝑦)2 (2)

𝑅𝑀𝑆𝐸 =

√︂
1
𝑁

∑︁
(𝑦 − 𝑦)2 (3)

To gain a more intuitive understanding of the prediction results,
we further introduce two metrics: accuracy and accuracy(±). To
calculate these metrics, we first convert the predicted rating 𝑦 to
the closest discrete rating 𝑦 (Equation 4). We define accuracy as the
percentage of screenshots where category(𝑦) = 𝑦. For accuracy(±)
we consider predictions that were one category above or below to
be accurate and calculate the percentage.

category(𝑦) =



0.0, if 0.0 ≤ 𝑦 < 0.1
0.2, if 0.1 ≤ 𝑦 < 0.3
0.4, if 0.3 ≤ 𝑦 < 0.5
0.6, if 0.5 ≤ 𝑦 < 0.7
0.8, if 0.7 ≤ 𝑦 < 0.9
1.0, if 0.9 ≤ 𝑦 < 1.0

(4)

4.4 Evaluation Results
4.4.1 Overall Prediction Accuracy. To answer research question
RQ1, we calculated all the metrics for the basic setting where we
apply PredART with all the training data for training and all the
testing data for testing. For the basic setting, as shown in the second
row of Table 4, we are able to achieve an accuracy (column Acc.)
of 85.0 and an accuracy(±) (column Acc. (±)) of 96.0, indicating
for 96% of the cases we are able to predict a user rating at least
one level above or below the ground truth. We also achieve MAE,
MSE, and RMSE of 0.047, 0.008, and 0.091, respectively, showing
that on average our predicted rating is less than 0.05 away from
the ground truth. To better understand the prediction results of
PredART, we further draw an X-Y table as in Table 3. In the X-Y table,
Column 1 presents all labeled ratings, and Columns 2–7 present the
percentage of all screenshots with corresponding labeled ratings
and predicated ratings. For example, the cell at Column 2 and Row
2 shows 9.8%, indicating 9.8% of screenshots are labeled as 0.0 and
predicted as 0.0 (predicted score less than 0.1). In the X-Y table,
the diagonal cells present the correctly predicted data points, and
cells far from the diagonal cells present the percent of data whose
predicted values are far away from ground truth. From the table,
we can see that, for the least realistic categories (i.e., ratings of
0.0 and 0.2), sometimes PredART predicts the rating wrong, but
the prediction never goes higher than 0.4; for the most realistic
categories (i.e., ratings of 0.8 and 1.0), the prediction never goes

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

Table 3: The X-Y Table for the prediction

Label
Pred. 0.0 0.2 0.4 0.6 0.8 1.0

0.0 9.8% 2.5% 0.0% 0.0% 0.0% 0.0%
0.2 2.3% 8.5% 0.0% 0.0% 0.0% 0.0%
0.4 1.5% 2.3% 9.8% 0.0% 0.0% 0.0%
0.6 0.0% 1.0% 0.8% 9.4% 0.6% 0.2%
0.8 0.0% 0.0% 0.0% 0.0% 18.1% 3.8%
1.0 0.0% 0.0% 0.0% 0.0% 0.0% 29.4%

Table 4: Comparison with ResNet

Approach MAE MSE RMSE Acc. Acc. (±)
PredART 0.047 0.008 0.091 85.0 96.0
ResNet 0.175 0.041 0.202 28.1 56.9

under 0.8; for the blurred area (0.4 and 0.6), the prediction can go
further to 0.0 and 1.0, but the likelihood is very low.

4.4.2 Comparison with Resnet. To answer research question RQ2,
we compare PredART metrics with a state-of-the-art image regres-
sion technique, ResNet, in the basic setting where we use training
data and test data of all three different sized objects. We present
the findings in Table 4, where Columns 2–6 present the MAE, MSE,
RMSE, accuracy, and accuracy (±), respectively. From the table, we
can observe that PredART outperforms ResNet in all the metrics:
MAE, MSE, and RMSE. PredART achieves MAE, MSE, and RMSE
of 0.047, 0.008, and 0.041 respectively, while ResNet achieves MAE,
MSE, and RMSE of 0.175, 0.041, and 0.202 respectively.

In terms of accuracy and accuracy (±) PredART significantly out-
performs ResNet. PredART achieves an accuracy and an accuracy
(±) of 85.0 and 96.0, respectively. ResNet achieves an accuracy and
an accuracy (±) of 28.1 and 56.9. PredART can correctly predict
ranking in situations where ResNet fails. Therefore, even when we
consider one category above or below, PredART is able to outper-
form ResNet.

It should be noted that we compare with ResNet because ResNet
can be directly applied to our problemwith feature concatenation. It
is possible to apply some more advanced image classification mod-
els [17] [60] with some adaptations (e.g., transfer learning). Since
these adaptations themselves can be a research problem and have
technical challenges, we do not consider them in our evaluation
but plan to explore their effectiveness in our future work.

4.4.3 Influence of Test Scenarios. To answer research question
RQ3, in our testing set, we consider different testing scenes in
Unity Mars, which are much more complicated than our training
scene, with many other objects as additional noises. It should be
noted that for training PredART we use only one scene with one or
two additional objects to offer a sense of scale for human workers.
However, for testing screenshots, we use virtual scenes of three
different scales: indoor scenes (dining room, living room, and office),
large indoor scenes (factory, warehouse), and outdoor scenes (back-
yard). Each scene contains numerous objects of various shapes and
sizes, unseen by the model. In some cases, the objects are partially
occluded by the surrounding objects. We present the evaluation
results on all five metrics for different scenes in Table 5.

Table 5: Results on Different Testing Scenes

Scene Name MAE MSE RMSE Acc. Acc. (±)
Backyard 0.038 0.007 0.083 87.5 95.8
Dining Room 0.035 0.003 0.055 92.5 100.0
Factory 0.022 0.002 0.049 92.5 100.0
Living Room 0.043 0.006 0.079 84.2 97.5
Office 0.077 0.017 0.13 75.8 90.8

Table 6: Results on Different Objects

Object MAE MSE RMSE Acc. Acc. (±)
Apple 0.043 0.005 0.072 88.8 98.1
Lamp 0.034 0.005 0.073 90.0 97.5
Chair 0.064 0.014 0.119 76.3 92.5

From the table, we can observe that PredART obtains the lowest
accuracy of 75.83 and the lowest accuracy (±) of 90.83 in the office
scene. The reason behind these results may be that the office scene
contains a lot of additional objects such as monitors, mice, pens,
chairs, etc., resulting in more noise for the image regression model.
As the number of surrounding objects in the vicinity becomes
smaller, PredART’s performance increases. In the living room, we
achieve an accuracy of 84.17 and 87.5. For the backyard scene, the
dining room scene, and the factory scene, we achieved the best
performance. We achieve an accuracy and accuracy (±) of 97.5 and
95.83, respectively, for the backyard scene. For the dining room
scene and the factory scene, we achieve an accuracy and accuracy
(±) of 92.5 and 100, respectively.

We further studied how different virtual objects might affect the
prediction results. The comparison of prediction results is shown in
Table 6. We compute the metrics values for each of the three virtual
objects used in the testing for each row of row 2-4 in the table. From
the table, we can see that for the apple and the lamp, our image
regression model predicts precise results, with an accuracy of 88.8
and 90.0, respectively. The accuracy (±) is also very high, reaching
98.1 and 97.5. In contrast, the model does not perform very well
for the chair. The reason may be that the chair is much larger and
is placed on the ground (while the other two are both placed on
tables). Furthermore, the shape of the chair is less regular than that
of the apple and the lamp.

4.4.4 Cross-Object Prediction. Cross-object prediction is very im-
portant in the application of PredART because it could be difficult
to label training data for all virtual objects to be tested. To answer
research question RQ4, we calculated all the metrics for the cross-
object setting, in which we applied PredART with screenshots of
two objects as training data and screenshots of the third object
as testing data. The metric in Table 7) shows that our prediction
results are comparable to the results in Table 6. We even get better
results for the apple. In particular, for the apple, we achieved an
accuracy of 97.5 and an accuracy (±) of 98.8. The training data of
the apple may have caused some overfitting issues.

As the object size gets bigger, the results become worse, espe-
cially for the chair, which is understandable because training data
on smaller virtual objects may not be able to cover the cases of
larger objects. From this result, we can see that object size matters,
so it is important to include virtual objects of all sizes in the training
data.

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 7: Cross Object Prediction

Object MAE MSE RMSE Accuracy Accuracy (±)
Apple 0.048 0.006 0.079 97.5 98.7
Lamp 0.087 0.041 0.203 86.2 90.6
Chair 0.167 0.075 0.273 63.1 78.8

Table 8: The X-Y Table for cross-object prediction on apple

Label
Pred. 0.0 0.2 0.4 0.6 0.8 1.0

0.0 22.5% 0.0% 0.0% 0.6% 0.0% 0.0%
0.2 0.0% 16.2% 0.0% 0.0% 0.0% 0.0%
0.4 0.0% 0.0% 11.9% 0.0% 0.0% 0.0%
0.6 0.0% 0.0% 0.0% 9.4% 0.6% 0.0%
0.8 0.0% 0.0% 0.0% 0.0% 10.6% 1.2%
1.0 0.0% 0.0% 0.0% 0.0% 0.0% 26.9%

Table 9: The X-Y Table for cross-object prediction on lamp

Label
Pred. 0.0 0.2 0.4 0.6 0.8 1.0

0.0 6.9% 0.0% 0.6% 0.0% 0.0% 0.0%
0.2 0.0% 3.1% 0.0% 0.0% 0.0% 3.1%
0.4 0.0% 0.0% 11.2% 0.0% 0.0% 4.4%
0.6 0.0% 0.0% 0.0% 5.0% 0.0% 1.2%
0.8 0.0% 0.0% 0.0% 0.0% 20.0% 4.4%
1.0 0.0% 0.0% 0.0% 0.0% 0.0% 40.0%

We further draw three X-Y tables for each virtual object to under-
stand more detailed prediction results. Table 8 represents the X-Y
table for cross-object prediction results on the small-sized object—
apple, where medium-sized and large-sized objects are used for
training. We see that 97.5% of the values fall on the diagonal col-
umn (also represented in row 2 and the accuracy column of Table 7).
As we move to the medium-sized object—lamp, where small and
large-sized objects are used for training, we find 13.75% of the data
outside of the diagonal column (Table 9). Finally, we apply PredART
to small and medium-sized objects for training and the large-sized
object—chair for testing. where we have 63.125 accuracy and 78.75
accuracy (±) (row 4, column 4-5 of Table 7).

We also notice that, in all three cases, the most inaccurate pre-
dictions fall in the last column of the corresponding X-Y tables.
This means that we are predicting some unrealistic screenshots as
realistic, which could result in false negatives in testing. Such cases
are especially severe for the lamp with a ground truth label of 0.2,
where half of the screenshots are predicted as 1.0. Therefore, we can
see that, although the general metrics show acceptable results, the
X-Y table can be more helpful in understanding the details. We may
need to develop further techniques to lead the prediction result bias
to the unrealistic side, so that even if there are prediction errors,
they will be false positives, which are less harmful.

4.5 Validation on AR Apps
To further validate whether our approach can detect unrealistic
object placements in AR apps, we applied PredART to screenshots

Table 10: The X-Y Table for cross-object prediction on chair

Label
Pred. 0.0 0.2 0.4 0.6 0.8 1.0

0.0 2.5% 1.2% 0.6% 0.0% 0.0% 1.9%
0.2 0.0% 7.5% 0.0% 0.0% 0.0% 2.5%
0.4 0.0% 0.6% 8.1% 0.0% 1.2% 3.1%
0.6 0.6% 0.0% 0.0% 8.8% 1.2% 9.4%
0.8 0.0% 0.0% 0.6% 1.2% 16.9% 10.6%
1.0 0.0% 0.0% 0.0% 0.0% 1.9% 19.4%

taken from three AR apps: SimpleAR, Interaction, and Feathered-
Planes. They are part of the official open-source showcase apps4
from Unity, and we chose these three because they are mostly re-
lated to the object placement feature in AR. In particular, SimpleAR
automatically places a yellow semi-transparent plane on each of
the detected surfaces. There are buttons on the screen to let the
users pause or resume the AR experience. Interaction allows a user
to place a 3D model on a detected surface and perform some inter-
actions such as movement, rotation, and resizing. FeatheredPlanes
allows a user to place a 3D model on a feathered plane, representing
a detected surface with dotted mesh fading toward the edges.

Figure 9: Screenshots of SimpleAR (left) and FeatheredPlane
(right) in real scenes (upper) and Unity Mars virtual scenes
(lower)

To perform the validation, we load the source code of each of the
three apps into Unity and then manually test them in the virtual
scenes of Unity Mars. To be consistent with prior evaluations, we
tested each app on the same five virtual scenes: living room, dining
room, backyard, office, and factory. The upper row of Figure 9 shows
the screenshots of the apps SimpleAR (left) and FeatheredPlanes
(right) in real scenes. During the testing process, we randomly take
screenshots from different distances, horizontal angles, and vertical
angles. Since unrealistic object placements can be sparse in reality,
to make sure they are observable in the evaluation, we plant some
unrealistic object placements when taking screenshots by randomly
mutating the placed object’s position. It should be noted that we
mutate an object together with the detected surface it is placed on
because objects can be placed on only detected surfaces in most
AR frameworks, and object misplacement happens mainly due to
imprecisely detected surfaces. So, for unrealistic object placement,
4https://github.com/Unity-Technologies/arfoundation-samples

https://github.com/Unity-Technologies/arfoundation-samples

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

Table 11: Prediction on AR App Screenshots

App MAE MSE RMSE Accuracy Accuracy (±)
SimpleAR 0.093 0.027 0.163 73.3 86.7
Interaction 0.107 0.059 0.242 73.3 86.7
Feathered 0.080 0.024 0.155 66.7 93.3

Table 12: The X-Y Table for Predict on AR App Screenshots

Label
Pred. 0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
0.2 0.0% 0.0% 4.4% 0.0% 0.0% 2.2%
0.4 0.0% 0.0% 4.4% 0.0% 0.0% 0.0%
0.6 0.0% 0.0% 0.0% 2.2% 0.0% 8.9%
0.8 0.0% 0.0% 0.0% 0.0% 0.0% 15.6%
1.0 0.0% 0.0% 0.0% 0.0% 0.0% 62.2%

if the underlying plane is visible, it will be floating together with
the object. The lower row of Figure 9 shows the screenshots of
mutated object placements from SimpleAR and FeatheredPlanes.

From the three AR apps, we took 15 screenshots from each app
to form a dataset of 45 screenshots5. Then, we uploaded all of
them to Amazon Mechanical Turk for labeling (each screenshot
was labeled by five turks), and applied our pre-trained prediction
model (trained with the whole training set of 720 screenshots) to the
dataset to acquire the predicted scores of each screenshot. Finally,
we compared the labeled scores and predicted scores, and the results
are presented in Table 11 and Table 12.

From Table 11, we can observe that the results of PredART on
real AR app screenshots are comparable to those of cross-object
prediction in Table 7. This is understandable because we are also
performing cross-object prediction (all the objects in the AR apps
are unseen by the model) for AR app screenshots. From Table 12, we
can see that for all score ranges, PredART is able to precisely predict
the scores of most screenshots, and for most of the non-realistic
object placement screenshots (score < 0.5), PredART can correctly
predict their scores to be less than 0.5. It should be noted that
when mutating objects with their planes, for consistency we used
the same range of placement gaps as described in Section 3.1 for
generating test sets. It seems that the placement gap range resulted
in fewer non-realistic screenshots in the AR app testing dataset.
This is probably caused by the visible planes (e.g., yellow planes,
feathered planes) in our subject apps, which are mutated together
with the objects. Since planes are much larger, the placement gap
can be less observable. On the other hand, the more sparse the
distribution of non-realistic object placements, the closer to the
realistic testing case where placement errors are sparse and the
data is more unbalanced. Nevertheless, our evaluation results show
that PredART can effectively identify non-realistic screenshots in
such scenarios.

4.6 Summary of Findings
In this subsection, we summarize our findings to answer our re-
search questions as follows.

5The dataset is available at the project website.

• PredART is effective because it can achieve very high metric
values in predicting user ratings of virtual objects’ place-
ment.

• PredART outperforms ResNet, the state-of-the-art image
regression technique.

• Noises in scenes and objects’ sizes all moderately affect pre-
diction results.

• On cross-object prediction, PredART achieves acceptable
metric values. Techniques making the results lean to the
unrealistic side may help PredART in its practical usage.

• On screenshots from real AR apps tested on Unity Mars,
PredArt is able to achieve results comparable to those from
controlled testing scenarios.

4.7 Threats to Validity
The major external threat to our validity is that our evaluation only
covers a small number of scenes and virtual objects [58] [20]. Due
to the cost of labeling with multiple workers, we are not able to
create a huge dataset as an initial study, but we cover all the differ-
ent styles of scenes (small indoor scenes, large indoor scenes, and
outdoor scenes) in Unity Mars, and objects of different sizes. We
also studied the influence of these factors to indicate directions for
future research. To further reduce the threats, we plan to enlarge
our dataset to consider more test scenes and more types of virtual
objects. The major internal threat to our validity is the potential
mistakes made by labelling workers. Since we have five workers
for each screenshot, the influence of one mistake is lessened. Fur-
thermore, we performed outlier analysis to further confirm that the
potential mistakes made by labeling workers are limited to a very
small portion of the dataset. To further reduce this threat, we plan
to consider using more workers for the labeling, and then study
whether the labeling results stay stable when more workers are
added. Using this approach, we can find out how many workers we
need to achieve a stable rating of screenshots.

5 DISCUSSION
In this section, we discuss how our technique can help detect bugs
in AR software in practice.

5.1 Limitations of PredART
PredART mainly has two limitations. The first limitation is that our
approach is designed to be used in testing scenes (i.e., Unity Mars).
If we want to apply PredART to physical phones and real-world
scenes, the potential challenge is whether the feature values used in
our model are still accessible. In particular, the screenshots can be
easily acquired at runtime, and the horizontal angle and distance can
be calculated from sensor information. But the vertical angle and
misplacement could be hard to acquire at runtime. Therefore, we
may need to adapt our feature set. Meanwhile, oncemigrated to real-
world scenes, our approach has the potential to automatically make
object placement more accurate. We can change our prediction goal
from whether the object’s placement is realistic or not to whether
the object has a positive or negative misplacement. We plan to work
on this direction in the following projects. The second limitation is
that PredART handles only screenshots, which are more suitable
for static virtual objects. To determine the realisticness of moving

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

virtual objects, video clips may be needed and more features (e.g.,
the change of positions and angles) may also need to be considered.

5.2 Industrial Relevance
PredART can directly help AR software quality engineers in their
testing tasks by providing automatic test oracles so that they do not
need to keep watching test videos and hire multiple people to judge
whether the placement of objects is realistic. The warnings raised
by PredART may help AR developers find bugs in their application
code. Theymay also help product managers predict user satisfaction
with their product, determine whether the AR feature is mature
enough to be released, and help software architects select more
compatible AR underlying platforms.

6 RELATEDWORK
6.1 VR and AR Application Testing
The authors are not aware many research effots on VR and AR Test-
ing. Recently, Wang proposed VRTest [55], a test framework for VR
software. It extracts information about virtual objects at runtime,
and automatically guide the player camera towards these objects
to interact with them. Besides the research effort on VR/AR soft-
ware testing, there are also some research efforts on game testing.
Wuji [63] is a technique that supports automatic testing of games
based on evolutionary algorithms and reinforcement learning. It
explores the game spaces and branches, as well as makes progress
by passing stages. Zhao et al. [62] proposed an approach to enhance
playing tactics in game testing by learning from player action se-
quences. Bergdahl et al. [13] proposed an approach to augment
existing manually written test scripts with reinforcement learn-
ing. ARCHIE [31] is a framework to collect feedback from manual
testers and system state to identify and debug issues. Scheibmeir et
al. [52] present a framework that uses machine learning techniques
to detect object presentation in the physical world. Compared with
these efforts, our research focuses on the impact of virtual object
placement errors, which is an important factor affecting the success
of AR apps.

6.2 Test Oracle Generation
Test oracle generation has long been a bottleneck in automatic test-
ing. A lot of earlier work proposed promising approaches but were
not very effective due to the limitations of techniques at the time.
These efforts have been summarized in two surveys in 2014 [11, 47].
Metamorphic testing takes advantage of the known correlations
between test input changes and test oracle changes (e.g., feeding a
subset of input should always result in an output that is a subset
of the original output). It has been widely applied to the testing
of scientific software [26] and security testing [16]. Donaldson et
al. [18] propose to use metamorphic testing to test the compilation
of shader scripts based on known correlations among rendering
transformations. Langdon et al. [30] propose using deep learning to
predict partial test oracles for mutation testing. Goffi et al. [21] pro-
pose mining texts from Java API Documents to generate test oracles
on exceptional behaviors. Ceccato et al. [14] propose using machine
learning to learn a model for legal SQL statements and then use it
as an oracle in SQL injection testing. Mariani et al. [39] propose
Augusto, which creates GUI test cases with oracles for common GUI

operations such as log-in and CRUD (Creation, Reading, Update,
and Deletion). Menghi et al. [42] proposed using simulink models
to automatically create test oracles for continuous and uncertain
output, although the specification process is still manual. Walsh et
al. [54] propose to use the relationship among multiple layout out-
puts to automatically detect layout errors without using an oracle.
Test migration techniques [12] [48] create test oracles by migrating
oracles from existing tests. Chen et al. [15] propose GLIB to detect
game GUI glitches by machine learning. GLIB uses a code-based
data augmentation technique to automatically enlarge the training
data. PredART is different from all of the above efforts because it
targets a different application domain (i.e., AR applications) and a
type of failure that heavily relies on human perception.

6.3 Studies on VR, AR, and Game Software
There have also been some empirical studies on VR software and
video game software. Murphy-Hill et al. [44] presented results from
a survey and interviews with video game developers to understand
the major challenges between video game development and tradi-
tional software development. Later, Washburn et al. [56] performed
an empirical study on the failure of game projects to find out what
the major pitfalls in game projects are. Lin et al. [33] studied the
characteristics of updates on the Steam platform to understand
the priority of game updates in practice. Rodriguez and Wang [50]
investigated the popularity trends and common project structures
of open source virtual reality software projects. Li et al. [32] studied
bug reports for web applications supporting extended reality to
find out their commonalities. Molina et al. [43] studied code-asset
dependency within VR software projects by extracting the direct
association between VR objects and script files, the compositional
relations between VR objects, and event triggering relations be-
tween scripts and VR objects. Pascarella et al. [46] studied open
source video game projects to understand their characteristics and
the difference between game and non-game development. Nusrat
et al. [45] studied the major types of performance optimization
in Unity-based virtual reality applications. Zhang et al. [61] stud-
ied possible solutions to detect potential privacy leaks in mobile
augmented reality apps.

7 CONCLUSIONS
In this paper, we studied the feasibility of predicting users’ per-
ception of realisticness on virtual object placement with gaps. The
predicted user rating can be used as an automatic test oracle in AR
testing. We propose an approach called PredART which concate-
nates the output of convolutional neural networks and multi-layer
perceptrons to better balance feature weights. Our empirical eval-
uation based on mechanical turk labeling shows that PredART is
able to achieve an average accuracy of 85.0%, an MAE of 0.047, an
MSE of 0.008, and an RMSE of 0.091. The evaluation also reveals
that PredART outperforms the state-of-the-art image regression
technique ResNet, and it is effective in cross-object prediction and
prediction of screenshots of real AR apps tested in Unity Mars vir-
tual scenes. In the future, we plan to (1) expand the training and
evaluation set of our evaluation with more scenes and (2) study the
predictability of realisticness from short video clips.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Rafi, Zhang, and Wang

ACKNOWLEDGMENTS
We would like to thank Dongfang Liu and Cheng Han from the
Department of Computer Engineering at Rochester Institute of
Technology for their kind help on the setup and configuration of
computer vision tools. This research is supported in part by NSF
awards 1736209, 1846467, 2007718, and 2221843.

REFERENCES
[1] 2005. Unity. https://unity.com.
[2] 2018. Apple ARKit. https://developer.apple.com/augmented-reality/.
[3] 2018. Microsoft Hololens. https://www.microsoft.com/en-us/hololens.
[4] 2018. Oculus Rift. https://www.oculus.com/.
[5] 2019. XR Plug-in Framework. https://docs.unity3d.com/Manual/

XRPluginArchitecture.html.
[6] 2020. Unity MARS. https://unity.com/products/unity-mars.
[7] 2021. Google AR Core. https://developers.google.com/ar.
[8] Charu C Aggarwal. 2017. An introduction to outlier analysis. In Outlier analysis.

Springer, 1–34.
[9] Amazon. 2005. Amazon Mechanical Turk. https://www.mturk.com.
[10] Ronald T Azuma. 1997. A survey of augmented reality. Presence: Teleoperators &

Virtual Environments 6, 4 (1997), 355–385.
[11] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.

The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[12] Farnaz Behrang and Alessandro Orso. 2019. Test migration between mobile apps
with similar functionality. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 54–65.

[13] Joakim Bergdahl, Camilo Gordillo, Konrad Tollmar, and Linus Gisslén. 2020.
Augmenting automated game testing with deep reinforcement learning. In 2020
IEEE Conference on Games (CoG). IEEE, 600–603.

[14] Mariano Ceccato, Cu D. Nguyen, Dennis Appelt, and Lionel C. Briand. 2016.
SOFIA: An automated security oracle for black-box testing of SQL-injection
vulnerabilities. In 2016 31st IEEE/ACM International Conference on Automated
Software Engineering (ASE). 167–177.

[15] Ke Chen, Yufei Li, Yingfeng Chen, Changjie Fan, Zhipeng Hu, and Wei Yang.
2021. Glib: towards automated test oracle for graphically-rich applications. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering. 1093–
1104.

[16] Tsong Yueh Chen, Fei-Ching Kuo, Wenjuan Ma, Willy Susilo, Dave Towey, Jef-
frey Voas, and Zhi Quan Zhou. 2016. Metamorphic Testing for Cybersecurity.
Computer 49, 6 (2016), 48–55.

[17] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. 2021. Coatnet: Marrying
convolution and attention for all data sizes. Advances in Neural Information
Processing Systems 34 (2021), 3965–3977.

[18] Alastair F. Donaldson, Hugues Evrard, Andrei Lascu, and Paul Thomson. 2017.
Automated Testing of Graphics Shader Compilers. Proc. ACM Program. Lang.
OOPSLA, Article 93 (oct 2017).

[19] Henry Fuchs, Mark A Livingston, Ramesh Raskar, Kurtis Keller, Jessica R Craw-
ford, Paul Rademacher, Samuel H Drake, Anthony A Meyer, et al. 1998. Aug-
mented reality visualization for laparoscopic surgery. In International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, 934–
943.

[20] Smita Ghaisas, Preethu Rose, Maya Daneva, Klaas Sikkel, and Roel J Wieringa.
2013. Generalizing by similarity: Lessons learnt from industrial case studies.
In 2013 1st International Workshop on Conducting Empirical Studies in Industry
(CESI). IEEE, 37–42.

[21] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Auto-
matic Generation of Oracles for Exceptional Behaviors. In Proceedings of the 25th
International Symposium on Software Testing and Analysis. 213–224.

[22] Google. 2021. Google ARCore. https://developers.google.com/ar/discover/concepts.
[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Deep Residual

Learning for Image Recognition. https://doi.org/10.48550/ARXIV.1512.03385
[24] Alan R Hevner, Salvatore T March, Jinsoo Park, and Sudha Ram. 2004. Design

science in information systems research. MIS quarterly (2004), 75–105.
[25] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[26] Upulee Kanewala, James M Bieman, and Asa Ben-Hur. 2016. Predicting metamor-
phic relations for testing scientific software: a machine learning approach using
graph kernels. Software testing, verification and reliability 26, 3 (2016), 245–269.

[27] Hirokazu Kato and Mark Billinghurst. 1999. Marker tracking and hmd calibration
for a video-based augmented reality conferencing system. In Proceedings 2nd

IEEE and ACM International Workshop on Augmented Reality (IWAR’99). IEEE,
85–94.

[28] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[29] Sang Min Ko, Won Suk Chang, and Yong Gu Ji. 2013. Usability principles for
augmented reality applications in a smartphone environment. International
journal of human-computer interaction 29, 8 (2013), 501–515.

[30] William B. Langdon, Shin Yoo, and Mark Harman. 2017. Inferring Automatic Test
Oracles. In 2017 IEEE/ACM 10th International Workshop on Search-Based Software
Testing (SBST). 5–6.

[31] Sarah M. Lehman, Haibin Ling, and Chiu C. Tan. 2020. ARCHIE: A User-Focused
Framework for Testing Augmented Reality Applications in the Wild. In 2020
IEEE Conference on Virtual Reality and 3D User Interfaces (VR). IEEE. https:
//doi.org/10.1109/vr46266.2020.00013

[32] Shuqing Li, Yechang Wu, Yi Liu, Dinghua Wang, Ming Wen, Yida Tao, Yulei
Sui, and Yepang Liu. 2020. An exploratory study of bugs in extended reality
applications on the web. In 2020 IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 172–183.

[33] Dayi Lin, Cor-Paul Bezemer, and Ahmed E Hassan. 2017. Studying the urgent
updates of popular games on the Steam platform. Empirical Software Engineering
22, 4 (2017), 2095–2126.

[34] Dongfang Liu, Yiming Cui, Wenbo Tan, and Yingjie Chen. 2021. Sg-net: Spatial
granularity network for one-stage video instance segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 9816–9825.

[35] Lutz Lorenz, Philipp Kerschbaum, and Josef Schumann. 2014. Designing take over
scenarios for automated driving: How does augmented reality support the driver
to get back into the loop?. In Proceedings of the Human Factors and Ergonomics
Society Annual Meeting, Vol. 58. SAGE Publications Sage CA: Los Angeles, CA,
1681–1685.

[36] Unity Technologies Ltd. 2020. Unity MARS (Mixed and Augmented Reality
Subsystem). https://blog.unity.com/technology/introducing-unity-mars-a-first-
of-its-kind-solution-for-intelligent-ar.

[37] Unity Technologies Ltd. 2021. What’s new in Unity Mars. https://blog.unity.com/
technology/whats-new-in-unity-mars.

[38] Michael R Lyu, Irwin King, TT Wong, Edward Yau, and PW Chan. 2005. Ar-
cade: Augmented reality computing arena for digital entertainment. In 2005 IEEE
Aerospace Conference. IEEE, 1–9.

[39] Leonardo Mariani, Mauro Pezzè, and Daniele Zuddas. 2018. Augusto: Exploiting
Popular Functionalities for the Generation of Semantic GUI Tests with Oracles. In
Proceedings of the 40th International Conference on Software Engineering. 280–290.

[40] Winter Mason and Sidharth Suri. 2011. How to use mechanical turk for cognitive
science research. In Proceedings of the Annual Meeting of the Cognitive Science
Society, Vol. 33.

[41] Zeljko Medenica, Andrew L Kun, Tim Paek, and Oskar Palinko. 2011. Augmented
reality vs. street views: a driving simulator study comparing two emerging
navigation aids. In Proceedings of the 13th International Conference on Human
Computer Interaction with Mobile Devices and Services. 265–274.

[42] Claudio Menghi, Shiva Nejati, Khouloud Gaaloul, and Lionel C. Briand. 2019.
Generating Automated and Online Test Oracles for Simulink Models with Contin-
uous and Uncertain Behaviors. In Proceedings of the 2019 27th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering. 27–38.

[43] Jacinto Molina, Xue Qin, and Xiaoyin Wang. 2021. Automatic extraction of
code dependency in virtual reality software. In 2021 IEEE/ACM 29th International
Conference on Program Comprehension (ICPC). IEEE, 381–385.

[44] Emerson Murphy-Hill, Thomas Zimmermann, and Nachiappan Nagappan. 2014.
Cowboys, ankle sprains, and keepers of quality: How is video game development
different from software development?. In Proceedings of the 36th International
Conference on Software Engineering. 1–11.

[45] Fariha Nusrat, Foyzul Hassan, Hao Zhong, and Xiaoyin Wang. 2021. How Devel-
opers Optimize Virtual Reality Applications: A Study of Optimization Commits
in Open Source Unity Projects. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE). 473–485.

[46] Luca Pascarella, Fabio Palomba, Massimiliano Di Penta, and Alberto Bacchelli.
2018. How is video game development different from software development in
open source?. In 2018 IEEE/ACM 15th International Conference on Mining Software
Repositories (MSR). IEEE, 392–402.

[47] Mauro Pezzè and Cheng Zhang. 2014. Chapter One - Automated Test Oracles: A
Survey. Advances in Computers, Vol. 95. Elsevier, 1–48.

[48] Xue Qin, Hao Zhong, and Xiaoyin Wang. 2019. Testmig: Migrating gui test
cases from ios to android. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 284–295.

[49] Iulian Radu. 2012. Why should my students use AR? A comparative review of the
educational impacts of augmented-reality. In 2012 IEEE International Symposium
on Mixed and Augmented Reality (ISMAR). IEEE, 313–314.

[50] Irving Rodriguez and Xiaoyin Wang. 2017. An empirical study of open source
virtual reality software projects. In 2017 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM). IEEE, 474–475.

https://unity.com
https://developer.apple.com/augmented-reality/
https://www.microsoft.com/en-us/hololens
https://www.oculus.com/
https://docs.unity3d.com/Manual/XRPluginArchitecture.html
https://docs.unity3d.com/Manual/XRPluginArchitecture.html
https://unity.com/products/unity-mars
https://developers.google.com/ar
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.48550/ARXIV.1512.03385
https://doi.org/10.1109/vr46266.2020.00013
https://doi.org/10.1109/vr46266.2020.00013
https://blog.unity.com/technology/introducing-unity-mars-a-first-of-its-kind-solution-for-intelligent-ar
https://blog.unity.com/technology/introducing-unity-mars-a-first-of-its-kind-solution-for-intelligent-ar
https://blog.unity.com/technology/whats-new-in-unity-mars
https://blog.unity.com/technology/whats-new-in-unity-mars

PredART: Towards Automatic Oracle Prediction of Object Placements in Augmented Reality Testing ASE ’22, October 10–14, 2022, Rochester, MI, USA

[51] Franziska Roesner, Tadayoshi Kohno, and David Molnar. 2014. Security and
privacy for augmented reality systems. Commun. ACM 57, 4 (2014), 88–96.

[52] Jim Scheibmeir and Yashwant K. Malaiya. 2019. Quality Model for Testing
Augmented Reality Applications. In 2019 IEEE 10th Annual Ubiquitous Computing,
Electronics Mobile Communication Conference (UEMCON). 0219–0226. https:
//doi.org/10.1109/UEMCON47517.2019.8992974

[53] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[54] Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn. 2017. Automated
Layout Failure Detection for Responsive Web Pages without an Explicit Oracle.
In Proceedings of the 26th ACM SIGSOFT International Symposium on Software
Testing and Analysis. 192–202.

[55] X. Wang. 2022. VRTest: An Extensible Framework for Automatic Testing of
Virtual Reality Scenes. In 2022 IEEE/ACM 44th International Conference on Software
Engineering: Companion Proceedings (ICSE-Companion). 232–236.

[56] Michael Washburn, Pavithra Sathiyanarayanan, Meiyappan Nagappan, Thomas
Zimmermann, and Christian Bird. 2016. WhatWent Right andWhatWentWrong:
An Analysis of 155 Postmortems from Game Development. In Proceedings of the
38th International Conference on Software Engineering Companion (Austin, Texas)
(ICSE ’16). 280–289.

[57] Sanford Weisberg. 2005. Applied linear regression. Vol. 528. John Wiley & Sons.

[58] Roel Wieringa and Maya Daneva. 2015. Six strategies for generalizing software
engineering theories. Science of computer programming 101 (2015), 136–152.

[59] Roel J Wieringa. 2014. Design science methodology for information systems and
software engineering. Springer.

[60] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael
Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Si-
mon Kornblith, et al. 2022. Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference time. In International
Conference on Machine Learning. PMLR, 23965–23998.

[61] Xueling Zhang, Rocky Slavin, Xiaoyin Wang, and Jianwei Niu. 2019. Privacy
Assurance for Android Augmented Reality Apps. In 2019 IEEE 24th Pacific Rim
International Symposium on Dependable Computing (PRDC). IEEE, 114–1141.

[62] Yan Zhao, Weihao Zhang, Enyi Tang, Haipeng Cai, Xi Guo, and Na Meng.
2021. A Lightweight Approach of Human-Like Playtesting. arXiv preprint
arXiv:2102.13026 (2021).

[63] Yan Zheng, Xiaofei Xie, Ting Su, Lei Ma, Jianye Hao, Zhaopeng Meng, Yang
Liu, Ruimin Shen, Yingfeng Chen, and Changjie Fan. 2019. Wuji: Automatic
online combat game testing using evolutionary deep reinforcement learning. In
2019 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE, 772–784.

https://doi.org/10.1109/UEMCON47517.2019.8992974
https://doi.org/10.1109/UEMCON47517.2019.8992974

	Abstract
	1 Introduction
	2 Background
	2.1 Unity Mars Test Framework
	2.2 Amazon Mechanical Turk
	2.3 Image Regression, CNN and ResNet

	3 Approach
	3.1 Creating Screenshots
	3.2 Data Labelling
	3.3 Hybrid Image Regression

	4 Evaluation
	4.1 Research Questions
	4.2 Evaluation Configuration
	4.3 Image Regression Metrics
	4.4 Evaluation Results
	4.5 Validation on AR Apps
	4.6 Summary of Findings
	4.7 Threats to Validity

	5 Discussion
	5.1 Limitations of PredART
	5.2 Industrial Relevance

	6 Related Work
	6.1 VR and AR Application Testing
	6.2 Test Oracle Generation
	6.3 Studies on VR, AR, and Game Software

	7 Conclusions
	Acknowledgments
	References

