
Program Analysis,
Testing, and Repair
Yu Huang
Vanderbilt University
yu.huang@vanderbilt.edu

Program Analysis

• The systematic examination of a program to determine its properties
• Is my program correct?
• Where is the bug?
• What does a program do (without running it)?
• How to prove theorems about the behavior of a program?
• ...

• Why should I care?
• Automatic testing and bug finding
• Language design and implementations (compilers, VMs)
• Program transformation (optimization, repair)
• Program synthesis

2

Operate on the programs

Program Analysis

• What issues can you find using program analysis?
• Defects that result from inconsistently following simple design rules

• Security: Buffer overruns, improperly validated input
• Memory safety: Null Pointer Dereference, uninitialized data
• Resource leaks: Memory, OS resources
• API protocols: Device drivers, GUI frameworks
• Exceptions: Arithmetic/library/user-defined
• Encapsulation: Accessing internal data, calling private functions
• Data races: Two threads access the same data without synchronization

3

Operate on the programs

Check compliance to simple, mechanical design rules

Program Analysis

4

• The systematic examination of a program to determine its properties
• Principle Techniques

• Static:
• Inspection: Human evaluation of code, design documents (specifications and models), etc.
• Analysis: Tools reasoning about the program without executing it.

• Dynamic:
• Testing: direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

The Bad News: Rice’s Theorem

“Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

Soundness and Completeness

• An analysis is “sound” if every claim it makes is true
• An analysis is “complete” if it makes every true claim
• Soundness/Completeness correspond to under/over-approximation

depending on context
• E.g. compilers and verification tools treat “soundness” as over-approximation

since they make claims over all possible inputs
• E.g. code quality tools often treat “sound” analyses as under-approximation

because they make claims about existence of bugs

Presenter Notes
Presentation Notes
First-order logic is complete

Soundness and Completeness Tradeoffs

• Sound + Complete is impossible in general (which theorem again?)
• Most practical tools attempt to be either sound or complete for some

specific application, using approximation
• Program analysis is a rich field because of the constant and never-

ending battle to balance the trade-offs for accuracy and performance
with ever-increasing software complexity

Presenter Notes
Presentation Notes
First-order logic is complete

Fundamental Concepts

•Abstraction
• Elide details of a specific implementation
• Capture semantically-relevant details; ignore the rest
• Handle “I don't know”

•Programs As Data
• Programs are just trees, graphs or strings -> precise program

representations!
• And we know how to analyze and manipulate those (e.g., visit every

node in a graph)

8

Program Analysis

9

• The systematic examination of a program to determine its properties
• Principle Techniques

• Static:
• Inspection: Human evaluation of code, design documents (specifications and models), etc.
• Analysis: Tools reasoning about the program without executing it.

• Dynamic:
• Testing: direct execution of code on test data in a controlled environment.
• Analysis: Tools extracting data from test runs.

“Unimportant” SSL Example

static OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
 SSLBuffer signedParams,
 uint8_t *signature,
 UInt16 signatureLen) {
 OSStatus err;
 …
 if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
 goto fail;
 if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
 goto fail;
 goto fail;
 if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
 goto fail;
 …
fail:
 SSLFreeBuffer(&signedHashes);
 SSLFreeBuffer(&hashCtx);
 return err
;
}

10

Presenter Notes
Presentation Notes
Secure Sockets Layer, is an encryption-based Internet security protocol. It was first developed by Netscape in 1995 for the purpose of ensuring privacy
It does a bunch of checks to evaluate if the certifacates are valid (server certificate you are communicating with). There are like 30 of them… If there is any “false/error != 0”, it will go to fail which returns the current “err” to the functional call. The problem is, the “second goto fail” will return 0 when it is executed and it will also skip all the checks after this line -> it assumes there is nothing wrong about the server (but there can be).

11

https://dwheeler.com/essays/apple-goto-fail.html

"GOTO Statement Considered Harmful"
 -- Edsger Dijkstra

https://dwheeler.com/essays/apple-goto-fail.html

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head * sh,
 int b_size) {
 struct buffer_head *bh;
 unsigned long flags;
 save_flags(flags);
 cli(); // disables interrupts
 if ((bh = sh->buffer_pool) == NULL)
 return NULL;
 sh->buffer_pool = bh -> b_next;
 bh->b_size = b_size;
 restore_flags(flags); // enables interrupts
 return bh;
}

12

Presenter Notes
Presentation Notes
Disk driver.
Cli() clears interrupts: a flag to tells CPU to accept interrupts or not
But if RETURN NULL is executed, it will never have a chance to enable interrupts again You are stuck in the kernel

Could We Have Found Them?

•How often would those bugs trigger?

•Linux example:
• What happens if you return from a device driver with interrupts disabled?
• Consider: that's just one function

 … in a 2,000 LOC file

 … in a 60,000 LOC module

 … in the Linux kernel: 15+ millions LOC

•Some defects are very difficult to find via testing or manual
inspection

13

Presenter Notes
Presentation Notes
Linux kernel: 15+ millions LOC

Many Interesting Defects

•… are on uncommon or difficult-to-exercise execution paths
• Thus it is hard to find them via testing

•Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

•We want to learn about “all possible runs” of the program
for particular properties
• Without actually running the program!
• Bonus: we don't need test cases!

14

Static Analyses Often Focus On

•Defects that result from inconsistently following simple,
mechanical design rules
• Security: buffer overruns, input validation
• Memory safety: null pointers, initialized data
• Resource leaks: memory, OS resources
• API Protocols: device drivers, GUI frameworks
• Exceptions: arithmetic, library, user-defined
• Encapsulation: internal data, private functions
• Data races (again!): two threads, one variable

15

Presenter Notes
Presentation Notes
overrun: array boundary. Encrypt password
New object: initialize it or it gets whatever it was there before
OS resource leak: file handles, network handles, ports, if you don’t close it properly
GUI frameworks: create a handle for a window, close it properly
Exceptions: unhandled exceptions
Encapsulation: make sure a field is private/public, etc.

Static Analysis

•Static analysis is the systematic examination of an
abstraction of program state space
• Static analyses do not execute the program!

•An abstraction is a selective representation of the program
that is simpler to analyze
• Abstractions have fewer states to explore

•Analyses check if a particular property holds
• Liveness: “some good thing eventually happens”
• Safety: “some bad thing never happens”

16

Presenter Notes
Presentation Notes
Liveness analysis-> if a variable is used in the future or not

Abstraction: Abstract Syntax Tree

18
https://dev.to/balapriya/abstract-syntax-tree-ast-explained-in-plain-english-1h38

Presenter Notes
Presentation Notes
Lexical analysis == tokenization
Syntactic analysis == parsing

Example of AST
• https://astexplorer.net/
• For this course, the intuition is fine: “It is a tree representing a

program”  You can walk through it!
• (Take Compilers if you want to learn how to parse for real.)

Presenter Notes
Presentation Notes
An AST is essentially a simplified version of a parse tree

Example of AST
• https://astexplorer.net/
• For this course, the intuition is fine! “It is a tree representing a

program”  You can walk through it!!!
• (Take Compilers if you want to learn how to parse for real.)

Abstraction: Control Flow Graph

•An CFG is a representation, using graph notation, of all paths that
might be traversed through a program during its execution

• Each node in the graph represents a basic block (i.e., a straight-line
piece of code without any jumps)

• Directed edges represents jumps

22

Example of CFG

Static Analysis: Dataflow Analysis

•Dataflow analysis is a technique for gathering information
about the possible set of values calculated at various points
in a program

•We first abstract the program to an AST or CFG

•We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

•We finally give rules for computing those abstract values
• Dataflow analyses take programs as input

25

One Exemplar Analysis

•Definite Null Dereference
• “Whenever execution reaches *ptr at program location L, ptr will be

NULL”

26

One Exemplar Analysis

•Definite Null Dereference
• “Whenever execution reaches *ptr at program location L, ptr will be

NULL”

•Potential Secure Information Leak
• “We read in a secret string at location L, but there is a possible future

public use of it”

27

Discussion

•These analyses are not trivial to check

•“Whenever execution reaches” → “all paths” → includes
paths around loops and through branches of conditionals

•We will use (global) dataflow analysis to learn about the
program
• Global = an analysis of the entire method body, not just one { block }

28

Data Flow Analysis Example: Null Ptr Dereference

• Is ptr always null when it is dereferenced?

29

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

Presenter Notes
Presentation Notes
Always -> when it tells you there is something wrong, it is definitely wrong. Sound
Ptr = 0  ptr is null (the address of ptr is null, the value of ptr is null)
Answer: it is not always null!!! Right path is not null

Correctness

• To determine that a use of x is always null, we must know
this correctness condition:

• On every path to the use of x,
the last assignment to x is x := 0 **

30

Analysis Example Revisited

• Is ptr always null when it is dereferenced?

31

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

Static Dataflow Analysis

• Static dataflow analyses share several traits:
• The analysis depends on knowing a property P at a particular point in

program execution
• Proving P at any point requires knowledge of the entire method body
• Property P is typically undecidable!

32

Undecidability of Program Properties

•So, if interesting properties are
out, what can we do?

•Syntactic properties are decidable!
• e.g., How many occurrences of “x” are

there?

•Programs without looping are also
decidable!

34

Looping

•Almost every important program has a loop
• Often based on user input

•An algorithm always terminates

•So a dataflow analysis algorithm must terminate even if the
input program loops

•This is one source of imprecision
• Suppose you dereference the null pointer on the 500th iteration but

we only analyze 499 iterations

35

Presenter Notes
Presentation Notes
Imprecision: the dataflow analysis may not always work

Conservative Program Analyses

•We cannot tell for sure that ptr is always null
• So how can we carry out any sort of analysis?

•It is OK to be conservative.

36

Conservative Program Analyses

•We cannot tell for sure that ptr is always null
• So how can we carry out any sort of analysis?

•It is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either
• P is definitely true
• Don’t know if P is true

37

Presenter Notes
Presentation Notes
Either tell “Ps is always true” or give up

Conservative Program Analyses

•It is always correct to say “don’t know”
• We try to say don’t know as rarely as possible

•All program analyses are conservative

38

Definitely Null Analysis

• Is ptr always null when it is dereferenced?

39

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

Presenter Notes
Presentation Notes
Foo is not related to PTR

Definitely Null Analysis

• Is ptr always null when it is dereferenced?

40

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

Definitely Null Analysis

• Is ptr always null when it is dereferenced?

41

ptr = new AVL();

if (B > 0)

ptr = 0; X = 2 * 3;

print(ptr->data);

ptr = 0;

if (B > 0)

foo = myAVL; ptr = 0;

print(ptr->data);

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptr is ptr := 0 **

Definitely Null Information

•We can warn about definitely null pointers at any point
where ** holds

•Consider the case of computing ** for a single variable ptr
at all program points

•Valid points cannot hide!
•We will find you!

• (sometimes)

42

Presenter Notes
Presentation Notes
Valid point: when ** holds true

Definitely Null Analysis (Cont.)

•To make the problem precise, we associate one of the
following values with ptr at every program point
• Recall: abstraction and property

43

Don’t know if X is a
constant

⊤
(called Top)

X = constant cc

This statement is
not reachable

⊥
(called Bottom)

interpretationvalue

Presenter Notes
Presentation Notes
This is an example to check if X is a constant (NULL is a constant)
Cosntant analysis , constant propogation

Example

44

X = ⊤
X =

X =

X =
X =

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X =

X =

X =

Let's fill in these blanks now.

Recall: ⊥ = not reachable, c = constant, ⊤ = don't know.

Presenter Notes
Presentation Notes
Initialize all the X

Example Answers

45

X = ⊤
X = 3

X = 3

X = 3
X = 4

X = ⊤

X := 3

B > 0

Y := Z + W

X := 4

Y := 0

A := 2 * X

X = 3

X = 3

X = ⊤

Recall: ⊥ = not reachable, c = constant, ⊤ = don't know.

Presenter Notes
Presentation Notes
Initialize all the X

The Idea

• The analysis of a complicated program can be expressed as
a combination of simple rules relating the change in

information between adjacent statements

48

Explanation

•The idea is to “push” or “transfer” information from one
statement to the next

•For each statement s, we compute information about the
value of x immediately before and after s

• Cin(x,s) = value of x before s
• Cout(x,s) = value of x after s

49

Transfer Functions:

•Define a transfer function that transfers information from
one statement to another

50

Rule 1

• Cout(x, x := c) = c if c is a constant

51

x := c

X = ?

X = c

Presenter Notes
Presentation Notes
Transfer function rules

Rule 2

• Cout(x, s) = ⊥ if Cin(x, s) = ⊥

52

s

X = ⊥

X = ⊥

Recall: ⊥ = “unreachable code”

Rule 3

• Cout(x, x := f(…)) = T

53

x := f(…)

X = ?

X = T

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

Rule 4

• Cout(x, y := …) = Cin(x, y := …) if x ≠ y

54

y := . . .

X = a

X = a

The Other Half

•Rules 1-4 relate the in of a statement to the out of the same
statement
• they propagate information across statements

•Now we need rules relating the out of one statement to the
in of the successor statement
• to propagate information forward along paths

•In the following rules, let statement s have immediate
predecessor statements p1,…,pn

55

Rule 5

• if Cout(x, pi) = T for some i, then Cin(x, s) = T

56

s

X = T

X = T

X = ?X = ?X = ?

Presenter Notes
Presentation Notes
P: predecessor

Rule 6

if Cout(x, pi) = c and Cout(x, pj) = d and d ≠ c , then Cin (x, s) = T

57

s

X = d

X = T

X = ?X = ?X = c

Rule 7

if Cout(x, pi) = c or ⊥ for all i, then Cin(x, s) = c

58

s

X = c

X = c

X = ⊥
X = ⊥

X = c

Rule 8

if Cout(x, pi) = ⊥ for all i, then Cin(x, s) = ⊥

59

s

X = ⊥

X = ⊥

X = ⊥X = ⊥X = ⊥

Presenter Notes
Presentation Notes
All the rule for constant data flow analysis

Static Analysis Algorithm

•For every entry s to the program, set
Cin(x, s) = T

•Set Cin(x, s) = Cout(x, s) = ⊥ everywhere else

•Repeat until all points satisfy 1-8:
• Pick s not satisfying 1-8 and update using the appropriate rule

60

The Value ⊥
•To understand why we need ⊥, look at a loop

61

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

The Value ⊥

•To understand why we need ⊥, look at a loop

62

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

A < B

X = T
X = 3

X = 3

X = 3

X = 3

X = ???
X = ???

X = ???

The Value ⊥ (Cont.)

•Because of cycles, all points must have values at all times
during the analysis

•Intuitively, assigning some initial value allows the analysis to
break cycles

•The initial value ⊥ means “we have not yet analyzed control
reaching this point”

63

Another Example

64

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

Analyze the value of X …

Another Example: Answer

65

X := 3

B > 0

Y := Z + W Y := 0

A := 2 * X

X := 4

A < B

X = T
X = ⊥

X = ⊥

X = ⊥

X = ⊥

X = ⊥

X = ⊥

X = ⊥

X = ⊥

3

3

3

3

3

3

4

4

T

T

Must continue
until all rules
are satisfied !

Orderings

•We can simplify the presentation of the analysis by ordering
the values

• ⊥ < c < T
• Making a picture with “lower” values drawn lower, we get

66

⊥

T

-1 0 1… …
I am called
a lattice!

Presenter Notes
Presentation Notes
lattice:. Math structure that capture partial ordering (e.g, all the constants are same order)

Orderings (Cont.)

•T is the greatest value, ⊥ is the least
• All constants are in between and incomparable

• (with respect to this analysis)

•Let lub be the least-upper bound in this ordering
• cf. “least common ancestor” in Java/C++

•Rules 5-8 can be written using lub:
• Cin(x, s) = lub { Cout(x, p) | p is a predecessor of s } 67

Termination

•Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

•The use of lub explains why the algorithm terminates
• Values start as ⊥ and only increase

 ⊥ can change to a constant, and a constant to T
• Thus, C_(x, s) can change at most twice

68

Number Crunching

• The algorithm is polynomial in program size:
• Number of steps =
Number of C_(….) values changed * 2 =
(Number of program statements)2 * 2

69

“Potential Secure Information Leak” Analysis

• Could sensitive information possibly reach an insecure use?

In this example, the password contents can

potentially flow into a public display

(depending on the value of B)
70

str := get_password()

If B > 0

str := sanitize(str) Y := 0

display(str)

Sensitive Information

• A variable x at stmt s is a possible sensitive (high-security)
information leak if
• There exists a statement s’ that uses x
• There is a path from s to s’
• That path has no intervening low-security assignment to x

72

Computing Potential Leaks

•We can express the high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

•In this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value
• We have abstracted away the value

•This time we will start at the public display of information
and work backwards

73

Secure Information Flow Rule 1

 Hin(x, s) = true if s displays x publicly
true means “if this ends up being a secret variable

then we have a bug!”
74

display(x)

X = true

X = ?

Presenter Notes
Presentation Notes
Previous rule 1-8 is only for constant propagation analysis.
Now th rules are for info leak analysis , which is a backward analysis. For specific analysis, you need to design rules sccordingly. In other words, designing transer rules are part of datflow analysis

Secure Information Flow Rule 2

Hin(x, x := e) = false
(any subsequent use is safe)

75

x := sanitize(x)

X = false

X = ?

Secure Information Flow Rule 3

• Hin(x, s) = Hout(x, s) if s does not refer to x

76

s

X = a

X = a

Secure Information Flow Rule 4

• Hout(x, p) = ∨ { Hin(x, s) | s a successor of p }
(if there is even one way to potentially have a leak, we potentially have a leak!)

77

p

X = true

X = true

X = ?X = ?X = ?

Secure Information Flow Rule 5 (Bonus!)

• Hin(y, x := y) = Hout(x, x := y)
(To see why, imagine the next statement is

display(x). Do we care about y above?)

78

x := y

Y = a

X = a

Algorithm

•Let all H_(…) = false initially

•Repeat process until all statements s satisfy rules 1-4 :
• Pick s where one of 1-4 does not hold and update using

the appropriate rule

79

Secure Information Flow Example

80

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false
H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false

Secure Information Flow Example

81

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false
H(X) = TRUE

H(X) = false

H(X) = false

H(X) = false

H(X) = false

H(X) = false

Secure Information Flow Example

82

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE
H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

Secure Information Flow Example

83

X := passwd()

X := sanitize(X)

B > 0

Y := Z + W Y := 0

display(X)

X := passwd()

A < B

H(X) = false

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE
H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

H(X) = TRUE

POSSIBLE LEAK
From high-security
value starting here

No possible leak
Starting here

Presenter Notes
Presentation Notes
So basically, you care about the H_out(X) for x:= passwd(). If it is TRUE, it means there is a potential info leak

Termination

•A value can change from false to true, but not the other way
around

•Each value can change only once, so termination is
guaranteed

•Once the analysis is computed, it is simple to issue a
warning at a particular entry point for sensitive information

84

Static Analysis

•You are asked to design a static analysis to detect bugs
related to file handles
• A file starts out closed. A call to open() makes it open; open() may

only be called on closed files. read() and write() may only be called
on open files. A call to close() makes a file closed; close may only be
called on open files.

• Report if a file handle is potentially used incorrectly

•What abstract information do you track?

•What do your transfer functions look like?
86

Abstract Information

•We will keep track of an abstract value for a given file
handle variable

•Values and Interpretations
T file handle state is unknown
⊥ haven't reached here yet
closed file handle is closed
open file handle is open

87

Rules

•Previously: “null ptr”

88

•Now: “file handles”

*ptr

ptr = 0

Report
Error!

read(f)

f = closed

Report
Error!

Rules: open

89

open(f)

f = closed

open(f)

f = T or open

Report
Error!

f = open

Rules: close

90

close(f)

f = open

close(f)

f = T or closed

Report
Error!

f = closed

Rules: read/write

• (write is identical)

91

read(f)

f = open

read(f)

f = 𝑇𝑇 or closed

Report
Error!

f = open

Rules: Assignment

92

g := f

f = a

g := f

f = a

f = a g = a

Rules: Multiple Possibilities

93

f = a

f = T

f = b

f = a

f = a

f = a
f = ⊥

f = a

A Tricky Program
start:

switch (a)

 case 1: open(f); read(f); close(f); goto start

 default: open(f);

do {

 write(f) ;

 if (b): read(f);

 else: close(f);

} while (b)

open(f);

close(f);

94

95

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

⊥

⊥

⊥

⊥
⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥
⊥

⊥
start:

switch (a)

 case 1: open(f); read(f);

 close(f);

 goto start;

 default: open(f);

do {

 write(f) ;

 if (b): read(f);

 else: close(f);

} while (b)

open(f);

close(f);

96

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open
⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥

⊥
⊥

closed

97

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open
⊥

closed

open

open

open

open

open

closed

⊥
⊥

closed

98

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open T

closed

open

open

open

open

open

closed

T
⊥

closed

99

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open T

closed

open

T

T

T

T

T

T
𝑇𝑇

closed

100

start:

open(f)

read(f)

close(f)

open(f)

write(f) close(f)

read(f)

open(f)close(f)

closed

closed

closed

open

open T

closed

open

T

T

T

T

T

T
𝑇𝑇

closed

Is There Really A Bug?
start:

switch (a)

 case 1: open(f); read(f);

 close(f); goto start;

 default: open(f);

do {

 write(f) ;

 if (b): read(f);

 else: close(f);

} while (b)

open(f);

close(f);

101

Is There Really A Bug?
start:

switch (a)

 case 1: open(f); read(f);

 close(f); goto start;

 default: open(f);

do {

 write(f) ;

 if (b): read(f);

 else: close(f);

} while (b)

open(f);

close(f);

102

Static analysis:
it is ok to be conservative

Forward vs. Backwards Analysis

• We’ve seen two kinds of analysis:

• Definitely null (cf. constant propagation) is a forward
analysis: information is pushed from inputs to outputs

• Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back towards
inputs

103

Trivia: Software “bug”
This computer scientist was one of the first
programmers of the Harvard Mark I
computer, a pioneer of computer
programming who invented one of the first
linkers and was the first to devise the
theory of machine-independent PL (later
extended to create COBOL).

In 1947, “First actual case of bug being
found” in the Mark II computer at Harvard:
a moth in the hardware. This computer
scientist was not the one who found and
reported the bug, but was the person who
likely made the incident famous.

104

Presenter Notes
Presentation Notes
National museum of American history

Trivia: Software “bug”
This computer scientist was one of the first
programmers of the Harvard Mark I
computer, a pioneer of computer
programming who invented one of the first
linkers and was the first to devise the
theory of machine-independent PL (later
extended to create COBOL).

In 1947, “First actual case of bug being
found” in the Mark II computer at Harvard:
a moth in the hardware. This computer
scientist was not the one who found and
reported the bug, but was the person who
likely made the incident famous.

105

Grace Hopper
The Grace Hopper Celebration of Women in Computing (GHC)

Presenter Notes
Presentation Notes
The Grace Hopper Celebration of Women in Computing (GHC) is a series of conferences designed to bring the research and career interests of women in computing to the forefront. It is the world's largest gathering of women in computing.

Dynamic Analysis

• The “easier” way?
• Testing

• Edge/Path Coverage
• Information flow tracking
• Execution time profiling

• A dynamic analysis runs an instrumented program in a controlled
manner to collect information which can be analyzed to learn
about a property of interest.

Difficult Questions

•Does this program have a race condition?
•Does this program run quickly enough?
•How much memory does this program use?
•Is this predicate an invariant of this program?
•Does this test suite cover all of this program?
•Can an adversary's input control this variable?
•How resilient is this distributed application to failures?

107

Common Dynamic Analyses

•Run the program

•In a systematic manner
• On controlled inputs
• On randomly-generated inputs
• In a specialized VM or environment

•Monitor internal state at runtime
• Instrument the program: capture data to learn more than “pass/fail”

•Analyze the results

108

Testing

•“Software testing is an investigation conducted to provide
stakeholders with information about the quality of the
software product or service under test.”

•A typical test involves input data and a comparison of the
output. (More next lecture!)

•Note: unless your input domain is finite, testing does not
prove the absence of all bugs.

•Testing gives you confidence that your implementation
adheres to your specification.

109

Fuzz Testing (Fuzzing)

• How can we generate many different inputs fast?
• Input massive amounts of random data ("fuzz"), to

the test program in an attempt to make it
crash/expose bad behavior

Fuzz Testing (Fuzzing)

• Barton Miller, University of Wisconsin, 1989
• A night in 1988 with thunderstorm and heavy rain
• Connected to his office Unix system via a dial up connection
• The heavy rain introduced noise on the line
• Crashed many UNIX utilities he had been using everyday
• He realized that there was something deeper
• Asked three groups in his grad-seminar course to implement this idea of fuzz

testing:
• Two groups failed to achieve any crash results!
• The third group succeeded! Crashed 25-33% of the utility programs on the seven Unix

variants that they tested

Fuzz Testing (Fuzzing)

• Approach
• Generate random inputs
• Run lots of programs using random inputs
• Identify crashes of these programs
• Correlate random inputs with crashes
• Errors found: Not checking returns, Array indices out of bounds, not checking

null pointers, …

• American Fuzzy Lop (AFL)
• Fuzzing by applying various modifications to the input file

Mutation Testing

•Mutation testing (or mutation analysis) is a
test suite adequacy metric in which the quality
of a test suite is related to the number of
intentionally-added defects it finds.

•Informally: “You claim your test suite is really
great at finding security bugs? Well, I'll just
intentionally add a bug to my source code and
see if your test suite finds it!”

113

Defect Seeding

•Defect seeding is the process of intentionally
introducing a defect into a program. The
defect introduced is similar to defects
introduced by real developers. The seeding is
typically done by changing the source code.

•For mutation testing, defect seeding is
typically done automatically (given a model
of what human bugs look like)
• You will do this in Homework 3

114

Mutation Operators

•A mutation operator systematically changes a program point. In
mutation testing, the mutation operators are modeled on
historical human defects. Examples:

•if (a < b) → if (a <= b)
•if (a == b) → if (a != b)
•a = b + c → a = b – c
•f(); g(); → g(); f();
•x = y; → x = z;

115

Mutant

•A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations. The order of a mutant is the number of
mutation applied.

// original // 2nd-order mutant
if (a < b): if (a <= b):
 x = a + b → x = a – b
 print(x) print(x)

116

Competent Programmers

•The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a
few keystrokes.

•Programmers write programs that are largely correct. Thus
the mutants simulate the likely effect of real faults.
Therefore, if the test suite is good at catching the artificial
mutants, it will also be good at catching the unknown but
real faults in the program.

117

Do Humans Really Make Simple Mistakes?

118

Competent?

•Is the competent programmer hypothesis true?

119

Competent?

•Is the competent programmer hypothesis true?

•Yes and no.

•It is certainly true that humans often make simple typos
(e.g., + to -).

•But it is also true that some bugs are more complex than
that.

120

Coupling Effect

•The coupling effect hypothesis holds that complex faults
are “coupled” to simple faults in such a way that a test suite
that detects all simple faults in a program will detect a high
percentage of the complex faults.

•Is it true?
• Tests that detect simple mutants were also able to detect over 99%

of second- and third-order mutants historically
[A. J. Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5–20, Jan. 1992.]

121

Mutation Testing

•A test suite is said to kill (or detect, or reveal) a mutant if
the mutant fails a test that the original passes.

•Mutation testing (or mutation analysis) of a test suite
proceeds by making a number of mutants and measuring
the fraction of them killed by that test suite. This fraction is
called the mutation adequacy score (or mutation score).
• A test suite with a higher score is better.

122

Mutation Testing

123

Compare the
outputs: if outputs
are different -> the

mutant is killed

Mutation Testing

124

Compare the
outputs: if outputs
are different -> the

mutant is killed

• Stillborn mutants
• Syntactically incorrect, killed by compiler: e.g.,

x=a++b
• Trivial mutants

• Killed by almost any test case
• Equivalent mutants  HARD

• Always acts in the same behavior as the original
program: e.g., x=a+b and x=a-(-b)

•None of the above is interesting.
•We care about mutants that behave differently but we
don’t have test cases to identify them

Mutation Testing

• Mutation score =

number of mutants killed / total number
of mutants * 100

125

Compare the
outputs: if outputs
are different -> the
mutant is killed by

the test suite

Equivalent Mutant Problem

•Suppose you have “x = a + b; y = c + d;” and you swap those
two statements.

•The resulting program is a mutant, but it is semantically
equivalent to the original.
• So it will pass and fail all of the tests that the original passes and fails.

•So it will dilute the mutation score

•Detecting equivalent mutants is a big deal. How hard is it?

127

Equivalent Mutant Problem

•Detecting equivalent mutants is a big deal. How hard is it?

•It is undecidable!
• By direct reduction to the halting problem, or by Rice's Theorem

foo: # foo halts if and only if

 if p1() == p2(): # p1 is equivalent to p2

 return 0

 foo()

128

Fault Localization

• With testing, you know there is a bug. But, where is it?!

Fault Localization

•Fault localization is the task of identifying source code regions
implicated in a bug
• “This regression test is failing. Which lines should we change to fix

things?”

•Answer is not unique: there are often many places to fix a big
• Example: check for null at caller or callee?

•Debugging includes fault localization

•Answer may take the form of a list (e.g., of lines) ranked by
suspiciousness

130

Spectrum-Based Fault Localization

•Spectrum-based fault localization uses a dynamic analysis
to rank suspicious statements implicated in a fault by
comparing the statements covered on failing tests to the
statements covered on passing tests

•Basic idea:
• Instrument the program for coverage (put print statements

everywhere)
• Run separately on normal inputs and bug-inducing inputs
• Compute the set difference on coverage!

131

Fault Localization Example

•Consider this simple buggy program:

132

Coverage-Based Fault Localization

Statement 3,3,5 1,2,3 3,2,1 3,2,1 5,5,5 2,1,3
int m;
m = z;
if (y < z)
if (x < y)
m = y;
else if (x<z)
m = y; // bug
else
if (x > y)
m = y;
else if (x>z)
m = x;
return m;

Pass Pass Pass Pass Pass Fail 133

Insight: Print-Statement Debugging

•If you do not execute X but you do observe the bug, X
cannot be related to that bug

•If Y is primarily executed when you observe the bug, it is
more likely to be implicated than Z which is primarily
executed when you do not observe the bug

•Suspiciousness Ranking

134[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.]

Fault Localization Ranking

Statement 3,3,5 1,2,3 3,2,1 3,2,1 5,5,5 2,1,3 susp(s)
int m; 0.5
m = z; 0.5
if (y < z) 0.5
if (x < y) 0.63
m = y; 0
else if (x<z) 0.71
m = y; // bug 0.83
else 0
if (x > y) 0
m = y; 0
else if (x>z) 0
m = x; 0
return m; 0.5

Pass Pass Pass Pass Pass Fail 135Pass Pass Pass Pass Pass Fail

Then what? Automated Program Repair (APR)

• Testing: I know there is a bug!
• Fault localization: I know where the bug is!! (approximately…)
• Automated program repair: It can fix the bug for me!!!

• “Fix the bug” = = Apply a patch so that the program can pass all the previously
failing test cases (also pass all the previously passing test cases)

APR: How could that work? – The approach

•How do novices fix a buggy program?
• Randomly change the program…until it works

137

APR: How could that work? – The Simplest approach

•How do novices fix a buggy program?
• Randomly change the program…until it works

138

Mutation

APR: How could that work? – The Simplest approach

•How do novices fix a buggy program?
• Randomly change the program…until it works

139

MutationFault Localization Testing Again

APR: How could that work?

•Many faults can be localized to a small area
• Even if your program is a million lines of code, fault localization can

narrow it to 10-100 lines
•Many defects can be fixed with small changes

• Mutation (test metrics) can generate candidate patches from simple edits
• A search-based software engineering problem

•Can use regression testing (inputs and oracles, continuous
integration) to assess patch quality

•[Weimer et al. Automatically Finding Patches Using Genetic
Programming. Best Paper Award. IFIP TC2 Manfred Paul Award.
SIGEVO “Humies” Gold Award. Ten-Year Impact Award.]

140

APR: A More Sophisticated Approach

•If we had a cheap way to approximately decide if two programs
are equivalent
• We wouldn't need to test any candidate patch that is equivalent to a

previously-tested patch
• (Cluster or quotient the search space into equivalence classes with

respect to this relation)
•We use static analysis (like a dataflow analysis for dead code or

constant propagation) to decide this: 10x reduction in search
space

•[Weimer et al. Leveraging Program Equivalence for Adaptive
Program Repair: Models and First Results.]

141

•In mutation testing, the mutation operators are based on
common human mistakes

•Instead, use human edits or design patterns
• “Add a null check” or “Use a singleton pattern”

•Mine 60,000 human-written patches to learn the 10 most
common fix templates
• Resulting approach fixes 70% more bugs
• Human study of non-student developers (n=68): such patches are 20%

more acceptable
•[Kim et al. Automatic Patch Generation Learned from Human-

Written Patches. Best paper award.]

142

APR: A More Sophisticated Approach

Relationship with Mutation Testing

•This program repair approach is a dual of mutation testing
• This suggests avenues for cross-fertilization and helps explain some

of the successes and failures of program repair.

•Very informally:
• PR Exists M in Mut. Forall T in Tests. M(T)
• MT Forall M in Mut. Exists T in Tests. Not M(T)

143

	Program Analysis, Testing, and Repair
	Program Analysis
	Program Analysis
	Program Analysis
	The Bad News: Rice’s Theorem
	Soundness and Completeness
	Soundness and Completeness Tradeoffs
	Fundamental Concepts
	Program Analysis
	“Unimportant” SSL Example
	Slide Number 11
	Linux Driver Example
	Could We Have Found Them?
	Many Interesting Defects
	Static Analyses Often Focus On
	Static Analysis
	Abstraction: Abstract Syntax Tree
	Example of AST
	Example of AST
	Abstraction: Control Flow Graph
	Example of CFG
	Static Analysis: Dataflow Analysis
	One Exemplar Analysis
	One Exemplar Analysis
	Discussion
	Data Flow Analysis Example: Null Ptr Dereference
	Correctness
	Analysis Example Revisited
	Static Dataflow Analysis
	Undecidability of Program Properties
	Looping
	Conservative Program Analyses
	Conservative Program Analyses
	Conservative Program Analyses
	Definitely Null Analysis
	Definitely Null Analysis
	Definitely Null Analysis
	Definitely Null Information
	Definitely Null Analysis (Cont.)
	Example
	Example Answers
	The Idea
	Explanation
	Transfer Functions:
	Rule 1
	Rule 2
	Rule 3
	Rule 4
	The Other Half
	Rule 5
	Rule 6
	Rule 7
	Rule 8
	Static Analysis Algorithm
	The Value ⊥
	The Value ⊥
	The Value ⊥ (Cont.)
	Another Example
	Another Example: Answer
	Orderings
	Orderings (Cont.)
	Termination
	Number Crunching
	“Potential Secure Information Leak” Analysis
	Sensitive Information
	Computing Potential Leaks
	Secure Information Flow Rule 1
	Secure Information Flow Rule 2
	Secure Information Flow Rule 3
	Secure Information Flow Rule 4
	Secure Information Flow Rule 5 (Bonus!)
	Algorithm
	Secure Information Flow Example
	Secure Information Flow Example
	Secure Information Flow Example
	Secure Information Flow Example
	Termination
	Static Analysis
	Abstract Information
	Rules
	Rules: open
	Rules: close
	Rules: read/write
	Rules: Assignment
	Rules: Multiple Possibilities
	A Tricky Program
	Slide Number 95
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Slide Number 99
	Slide Number 100
	Is There Really A Bug?
	Is There Really A Bug?
	Forward vs. Backwards Analysis
	Trivia: Software “bug”
	Trivia: Software “bug”
	Dynamic Analysis
	Difficult Questions
	Common Dynamic Analyses
	Testing
	Fuzz Testing (Fuzzing)
	Fuzz Testing (Fuzzing)
	Fuzz Testing (Fuzzing)
	Mutation Testing
	Defect Seeding
	Mutation Operators
	Mutant
	Competent Programmers
	Do Humans Really Make Simple Mistakes?
	Competent?
	Competent?
	Coupling Effect
	Mutation Testing
	Mutation Testing
	Mutation Testing
	Mutation Testing
	Equivalent Mutant Problem
	Equivalent Mutant Problem
	Fault Localization
	Fault Localization
	Spectrum-Based Fault Localization
	Fault Localization Example
	Coverage-Based Fault Localization
	Insight: Print-Statement Debugging
	Fault Localization Ranking
	Then what? Automated Program Repair (APR)
	APR: How could that work? – The approach
	APR: How could that work? – The Simplest approach
	APR: How could that work? – The Simplest approach
	APR: How could that work?
	APR: A More Sophisticated Approach
	Slide Number 142
	Relationship with Mutation Testing

