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ABSTRACT
Debugging is notoriously difficult and extremely time con-
suming. Researchers have therefore invested a considerable
amount of effort in developing automated techniques and
tools for supporting various debugging tasks. Although po-
tentially useful, most of these techniques have yet to demon-
strate their practical effectiveness. One common limitation
of existing approaches, for instance, is their reliance on a
set of strong assumptions on how developers behave when
debugging (e.g., the fact that examining a faulty statement
in isolation is enough for a developer to understand and fix
the corresponding bug). In more general terms, most exist-
ing techniques just focus on selecting subsets of potentially
faulty statements and ranking them according to some cri-
terion. By doing so, they ignore the fact that understanding
the root cause of a failure typically involves complex activ-
ities, such as navigating program dependencies and rerun-
ning the program with different inputs. The overall goal of
this research is to investigate how developers use and bene-
fit from automated debugging tools through a set of human
studies. As a first step in this direction, we perform a pre-
liminary study on a set of developers by providing them with
an automated debugging tool and two tasks to be performed
with and without the tool. Our results provide initial evi-
dence that several assumptions made by automated debug-
ging techniques do not hold in practice. Through an analysis
of the results, we also provide insights on potential directions
for future work in the area of automated debugging.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging—Debugging Aids

General Terms: Experimentation

Keywords: Statistical debugging, user studies

1. INTRODUCTION
When a software failure occurs, developers who want to

eliminate the failure must perform three main activities.
The first activity, fault localization, consists of identifying
the program statement(s) responsible for the failure. The
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second activity, fault understanding, involves understanding
the root cause of the failure. Finally, fault correction is
determining how to modify the code to remove such root
cause. Fault localization, understanding, and correction are
referred to collectively with the term debugging.

Debugging is often a frustrating and time-consuming ex-
perience that can be responsible for a significant part of the
cost of software maintenance [25]. This is especially true for
today’s software, whose complexity, configurability, porta-
bility, and dynamism exacerbate debugging challenges. For
this reason, the idea of reducing the costs of debugging tasks
through techniques that can improve efficiency and effective-
ness of such tasks is ever compelling. In fact, in the last few
years, there has been a great number of research techniques
that support automating or semi-automating several debug-
ging activities (e.g., [1,3,8,11,21,29–31]). Collectively, these
techniques have pushed forward the state of the art in de-
bugging. However, there are several challenges in scaling
and transitioning these techniques that must be addressed
before the techniques are placed in the hands of developers.

In particular, one common issue with most existing ap-
proaches is that they tend to assume perfect bug understand-
ing, that is, they assume that simply examining a faulty
statement in isolation is always enough for a developer to
detect, understand, and correct the corresponding bug. This
simplistic view of the debugging process can be compelling,
as it allows for collecting some objective information on the
effectiveness of a debugging technique and provides a com-
mon ground for comparing alternative techniques. However,
this view has now become a de-facto metric for guiding the
definition of debugging techniques and assessing their use-
fulness, which is less than ideal. In fact, recently we are
witnessing a situation where many researchers are just fo-
cusing on giving a faulty statement the highest rank (in some
cases, with little gain over the state of the art).

Just focusing on statement selection and ranking ignores
the fact that understanding the root cause of a failure typ-
ically involves complex activities (e.g., navigating data and
control dependences in the code, examining parts of the pro-
gram state, rerunning the program with different inputs).
We believe that, given the maturity of the field, it is now
time to take into account the inherent complexity of these
debugging activities in both the definition and, especially,
the evaluation of debugging techniques. Such an evaluation
should involve studies on how real developers use existing
techniques and whether such use is actually beneficial.

Unfortunately, in 30 years since Weiser’s foundational pa-
per on program slicing [26], only a handful of empirical
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studies have evaluated how developers use debugging tools
(e.g., [6, 15, 16, 26, 28]). Even worse, the total number of
participants in these studies amounts to less than 100 de-
velopers, and most programs studied are trivial, often in-
volving less than 100 lines of code. As Francel and Rugaber
noted [6], for instance, only 3 out of 111 papers on slic-
ing based debugging techniques have considered issues with
the use of the techniques in practice. Similar considerations
could be made today about spectra-based debugging tech-
niques (e.g., [11, 17]).

The overall goal of this research is to address this gap in
our understanding of automated debugging through a set of
human studies that investigate what makes debugging aids
work (or not work) in practice. Note that our goal is not to
conclusively prove that a particular approach is better than
another one; it is rather to gather insight on how to build
better debugging tools and identify promising research di-
rections in this area. As a first step towards our goal, in this
paper we perform a preliminary study in which we inves-
tigate whether, and to what extent, a popular automated
debugging technique [11] helps developers in their debug-
ging tasks. More precisely, we selected a set of 34 devel-
opers with different degrees of expertise, assigned them two
different debugging tasks, and compared their performance
when using a representative automated debugging tool [11]
and when using standard debugging tools available within
the Eclipse IDE (http://www.eclipse.org/). In the study,
we did not just examine whether developers can find bugs
faster using an automated technique; we also tried to jus-
tify our results by analyzing in detail and understanding the
developers’ behavior when using debugging tools.

The study produced several interesting results. For ex-
ample, we found that the use of an automated tool helped
more experienced developers find faults faster in the case of
an easy debugging task, but the same developers received
no benefit from the use of the tool on a harder task. We
also found that most developers, when provided with a list
of ranked statements, do not examine the statements in the
order provided, but rather search through the list based on
some intuition on the nature of the fault (which limits the
usefulness of pure statement ranking). In general, although
the results of our study are still preliminary, they provide in-
sight into the behavior of developers during debugging and
strong evidence that several of the assumptions on which
many automated debugging techniques rely do not actually
hold in practice.

In this paper, we make the following contributions:

• A review of the main empirical studies on automated
debugging tools presented in the literature.

• Two studies that investigate whether and to what extent
debugging tools help developers.

• An analysis of the study results and a discussion of the
implications of such results for future research in the area
of fault localization and debugging in general.

2. DEBUGGING TECHNIQUES AND
RELATED STUDIES

2.1 Automated Debugging Techniques
Over the years, researchers have defined increasingly so-

phisticated debugging approaches, going from mostly man-
ual techniques to highly automated ones. Simultaneously,

infrastructure to support debugging tasks has also been de-
veloped. As a result, the body of related work is broad.
Here, we focus on representative examples and on the work
that is most related to our proposed research.

Almost 30 years ago, Weiser proposed one of the first tech-
niques for supporting automated debugging and, in particu-
lar, fault localization: program slicing [26,27]. Given a pro-
gram P and a variable v used at a statement s in P, slicing
computes all of the statements in P that may affect the value
of v at s. By definition, if the value of v in s is erroneous,
then the faulty statements that led to such erroneous value
must be in the slice. In other words, any statement that
is not in the slice can be safely ignored during debugging.
Although slicing can generate sets of relevant statements,
in most realistic cases these sets are too large to be useful
for debugging [30]. To address this issue, researchers investi-
gated different variations of slicing aimed at reducing the size
of the computed slices. In particular, Korel and Laski intro-
duced dynamic slicing, which computes slices for a particular
execution (i.e., a statement is in the slice only if it may af-
fect the value of v in s for the specific execution considered).
In subsequent years, different variations of dynamic slicing
have been proposed in the context of debugging, such as
critical slices [4], relevant slices [9], data-flow slices [31], and
pruned slices [30]. These techniques can considerably reduce
the size of slices, and thus potentially improve debugging.
However, the sets of relevant statements identified are often
still fairly large, and slicing-based debugging techniques are
rarely used in practice.

An alternative family of debugging techniques aim to over-
come the limitations of slicing-based approaches by following
a different philosophy. These techniques identify potentially
faulty code by observing the characteristics of failing pro-
gram executions, and often comparing them to the charac-
teristics of passing executions. These approaches differ from
one another in the type of information they use to character-
ize executions and statements—path profiles [22], counterex-
amples (e.g., [1, 8] and approaches based on model check-
ing in general), statement coverage [11], and predicate val-
ues [17,19]—and in the specific type of mining performed on
such information. Additional work in this area has investi-
gated the use of clustering techniques to eliminate redundant
executions and facilitate fault localization [10,13,18,21].

One problem with this general class of techniques is that
they focus exclusively on trying to reduce the number of
statements developers need to examine when investigating a
failure, under the assumption that examining a faulty state-
ment in isolation is enough for a developer to detect and fix
the corresponding bug. Unfortunately, it is unclear whether
developers can actually determine the faulty nature of a
statement by simply looking at it, without any additional
information (e.g., the state of the program when the state-
ment was executed or the statements that were executed
before or after that one). When using these techniques, this
type of information can only be gathered by rerunning the
program against the input that caused the failure being in-
vestigated. In general, without a clear understanding of how
developers would use these techniques in practice, the po-
tential effectiveness of such techniques remains unknown.

2.2 Empirical Studies with Programmers
As we mentioned in the Introduction, to the best of our

knowledge only a handful of researchers have performed stud-
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ies to evaluate automated debugging techniques and tools
with programmers. This scarcity of studies limits our un-
derstanding of the effectiveness of these techniques, their
practicality, and the validity of the assumptions on which
they rely. In the rest of this section, we summarize the main
empirical studies performed so far in this area.

In Weiser’s initial study [26], 21 programmers examined
3 programs whose size ranged between 75 and 150 lines of
code. The study did not directly evaluate if programmers
could more effectively debug with slicing. Instead, program-
mers were (1) asked to debug a never-seen-before program
P, (2) presented with different fragments of P of two types,
slices and “random” snippets, and (3) requested to recognize
the various code fragments. Overall, slices were recognized
significantly more often than other fragments, which sug-
gests that programmers tend to follow the flow of execution
when investigating a failure during debugging.

The first study to actually examine whether programmers
with a slicing tool could debug more effectively was per-
formed by Weiser and Lyle, but could not find any bene-
fit [28]. In the study, they did not observe any improve-
ment when developers debugged a small faulty program (100
LOC) using a slicing tool. In a follow-up study, they changed
several parameters of the experiment. First, they used a
smaller program (25 LOC). Second, instead of an interac-
tive tool, they used a paper printout of the sliced program.
Finally, they used a different slicing technique, called dic-
ing, that combines slices from failing and passing test cases
to reduce the number of statements to be examined. The
results of this second study were positive, in that program-
mers provided with the printout of the slices were faster in
finding some of the bugs than the programmers without that
information.

More recent studies have examined the debugging behav-
ior of programmers in relation to slicing. In an experiment
with 17 students, Francel and Rugaber found that only four
of those programmers were instinctively slicing [6]. The
study also showed that these four developers had a better
understanding of the program, in comparison to non-slicers,
when debugging a 200 line program. Other differences were
found between the groups, such as the fact that non-slicers
were less careful and less systematic in their inspection.

In a subsequent study, Kusumoto and colleagues selected
six students, provided three of them with a slicing tool,
and assessed which group performed better during debug-
ging [16]. The study involved finding bugs in 3 small pro-
grams (around 400 LOC) containing a total of 9 faults. No
significant difference could be found between the groups in
this case, so the researchers performed a simplified version
of the experiment in which they used 6 smaller programs
(25–52 LOC) and 6 faults. The results of this second study
showed a significant difference in the amount of time needed
by the two groups of students to locate the faults for some
of the programs, but not for all of them.

Sherwood and Murphy presented an experiment in which
six subjects were provided with an Eclipse plugin that showed
differential coverage between execution traces (e.g., a pass-
ing and a failing one) and used it to understand and fix
faulty code on two real-world medium-sized programs [23].
Although no definitive conclusions could be drawn from the
study, there was some evidence that novice programmers
that used the tool could be more successful than experts
who were not using it.

The most extensive evaluation of a debugging technique
to date is the empirical study of the Whyline tool [14]. Why-
line focuses on assisting novice users with formulating hy-
potheses and asking intuitive questions about a program’s
behavior. For example, a user can click on part of a pro-
gram’s interface and select the question “why is this rect-
angle blue?” The user would then be shown the statements
responsible for that behavior, could ask further questions
on those statements, and could continue the investigation
in this interactive way. Merging visualization, dynamic slic-
ing, automatic reasoning, and a slick user interface into one
tool, Whyline shows what a mature program slicing tool can
achieve; in a study with 20 subjects investigating two real
bugs from ArgoUML (150 KLOC), participants that used
Whyline were able to complete the task twice as fast than
participants using only a traditional debugger [15].

In summary, as the brief survey in this section shows,
empirical evidence of the usefulness of many automated de-
bugging techniques is limited, in the case of slicing, when
not completely absent, for most other types of techniques.
This situation makes it difficult to assess the practical effec-
tiveness of the techniques proposed in the literature and to
understand which characteristics of a technique can make it
successful. In this paper, we try to fill this gap by studying
a set of developers while debugging real bugs with and with-
out the help of an automated debugging technique. The rest
of the paper discusses our study and its results.

3. RESEARCH QUESTIONS
AND HYPOTHESES

3.1 Hypotheses
Intuitively, developers using an automated debugging tool

should outperform developers that do not use the tool. Our
first hypothesis is therefore as follows.

Hypothesis 1 - Programmers who debug with the assis-
tance of automated debugging tools will locate bugs faster
than programmers who debug code completely by hand.

We would also expect that an automated tool should be
more useful for a more difficult debugging task. In this case,
the tool should give developers an edge over traditional de-
buggers. We hence formulate a second hypothesis.

Hypothesis 2 - The effectiveness of an automated tool in-
creases with the level of difficulty of the debugging task.

Finally, when considering the class of debugging tech-
niques based on statement ranking, the central assumption
of many previous evaluations is that a high rank should be
correlated with less effort on the programmer’s side because
fewer statements must be inspected. Based on this assump-
tion, we would expect the rank of the faulty statement to af-
fect a programmer’s performance. This concept is expressed
by our third hypothesis.

Hypothesis 3 - The effectiveness of debugging when using
a ranking based automated tool is affected by the rank of
the faulty statement.

3.2 Research Questions
In our study, we also formulate several research questions

concerning how developers use automated debugging tools
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in practice. Our first research question asks how realistic is
the assumption that programmers would use a ranked list of
statements provided by a tool. The rationale for this ques-
tion is that the premise of most evaluations of debugging
techniques is that developers investigate statements individ-
ually, one at a time, until they find the bug. This assumption
gives a one-to-one mapping between the rank of the faulty
statements and the assumed effectiveness of an algorithm.

Research Question 1 - How do developers navigate a list
of statements ranked by suspiciousness? Do they visit them
in order of suspiciousness or go from one statement to the
other by following a different order?

Our second research question investigates if a programmer
can identify a faulty statement just by looking at it. An
implicit assumption in the model used by existing empirical
evaluations is in fact that such perfect bug understanding
exists. We want to assess how realistic this assumption is.

Research Question 2 - Does perfect bug understanding
exist? How much effort is actually involved in inspecting
and assessing potentially faulty statements?

Our final research question seeks to capture and under-
stand the challenges, in terms of problems and also opportu-
nities, faced by developers when using automated debugging
tools.

Research Question 3 - What are the challenges involved
in using automated debugging tools? What issues or barri-
ers prevent their effective use? Can unexpected, emerging
strategies be observed?

4. EXPERIMENTAL PROTOCOL

4.1 Program Subjects
In our experiment, we wanted to select program subjects

that were similar to the ones used in previous studies and
yet not trivial.

4.1.1 Tetris
As our first subject, we selected a Java implementation of

Tetris (http://www.percederberg.net/games/tetris/tetris-1.
2-src.zip). The program consists of 2,403 LOC including
comments and blanks. From our previous experience in run-
ning programming experiments [20], popular games are ideal
subjects, as participants are typically familiar with the be-
havior of the games and can readily identify game concepts
in the source code.

4.1.2 NanoXML
As our second subject, we selected NanoXML, a library

for XML parsing available from the SIR repository [5]. The
version we used consists of 4,408 LOC including comments
and blanks. NanoXML, besides being one of the largest sub-
jects used in evaluations of automated debugging techniques
to date, presents many characteristics that Tetris does not
have. In particular, parsing is a domain with which many
programmers are not familiar, especially for what concerns
more advanced features of XML, such as namespaces and
schemas. In this sense, using these two subjects lets us inves-
tigate two complementary situations—one where the users
are somehow familiar with the code, and the other where
they are not.

Figure 1: Tetris Task: Identify and fix the cause of
the abnormal rotation of squares in Tetris.

4.2 Participants
We selected participants from the set of graduate students

enrolled in graduate-level software engineering courses at
Georgia Tech. As part of their coursework, these students
have been instructed on debugging, including automated
fault-localization techniques. Overall, we had a total of 34
participants, whose backgrounds represented a full range of
experiences; several participants worked in industry for one
or more years (or even ran their own startup companies)
and returned to school, others did one or more internships
in companies, and yet others had limited programming ex-
periences outside of school. As every programmer must per-
form some debugging, from new hires to seasoned experts,
we were comfortable with this variance in experiences, which
could allow us to assess how debugging tools could help dif-
ferent types of programmers in different ways.

4.3 Tasks
We gave participants two main tasks, each involving the

debugging of a failure in one of the two subjects considered.
For each task, the participants were given a description of
the failure and a way of reproducing it, and were asked to
identify the fault(s) causing such failure and propose a fix.

4.3.1 Task 1
The first task involved identifying and fixing a fault in

Tetris. The description of the failure consisted of the screen-
shot shown in Figure 1 and the following textual description:

The rotation of a square block causes unusual behavior:
The square block will rise upwards instead of rotating
in place (which would have no observable effect). If
needed, you can easily reproduce the failure by running
Tetris and trying to rotate a square block.

4.3.2 Task 2
The second task involved identifying and fixing a fault in

NanoXML. The failure description, shown in Figure 2, con-
tained a stack trace and a test input causing the failure. As
the figure shows, the failure consisted of an XMLParseEx-
ception that was raised because starting and closing XML
tags did not match: “ns:Bar” != “:Bar”.

4.4 Instruments
4.4.1 Automated Debugging Technique

As a representative of current approaches to automated
fault localization, we chose to use the Tarantula technique by
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When running the NanoXML program (main is in class Parser1_vw_v1), the following exception is 
thrown: 
Exception in thread "main" net.n3.nanoxml.XMLParseException:
XML Not Well-Formed at Line 19: Closing tag does not match opening tag: 
 `ns:Bar' != `:Bar'
at net.n3.nanoxml.XMLUtil.errorWrongClosingTag(XMLUtil.java:497)
at net.n3.nanoxml.StdXMLParser.processElement(StdXMLParser.java:438)
 at net.n3.nanoxml.StdXMLParser.scanSomeTag(StdXMLParser.java:202)
 at net.n3.nanoxml.StdXMLParser.processElement(StdXMLParser.java:453)
 at net.n3.nanoxml.StdXMLParser.scanSomeTag(StdXMLParser.java:202)
 at net.n3.nanoxml.StdXMLParser.scanData(StdXMLParser.java:159)
 at net.n3.nanoxml.StdXMLParser.parse(StdXMLParser.java:133)
 at net.n3.nanoxml.Parser1_vw_v1.main(Parser1_vw_v1.java:50)
 
The input, testvm_22.xml, contains the following input xml document: 
<Foo a=”test”> 
   <ns:Bar> 
     <Blah x=”1” ns:x=”2”/> 
  </ns:Bar> 
</Foo> 
 
Given this input, why is this happening:  
Closing tag does not match opening tag: `ns:Bar' != `:Bar' 

Figure 2: NanoXML Task: Identify the cause of the
failure in NanoXML and fix the problem.

Jones and colleagues [11], for several reasons. First, Taran-
tula is, like most state-of-the-art debugging techniques, based
on some form of statistical ranking of potentially faulty
statements. Second, a thorough empirical evaluation of Taran-
tula has shown that it can outperform other techniques [12].
(More recently, more techniques have been proposed, but
their improvements, when present, are for the most part
marginal and dependent on the context.) Finally, Tarantula
is easy to explain and teach to developers.

4.4.2 Plugin
To make it easy for the participants to use the selected

statistical debugging technique, we created an Eclipse plu-
gin that provides the users with the ranked linked of state-
ments that would be produced by Tarantula. We decided
to keep the plugin’s interface as simple as possible: a list
of statements, ordered by suspiciousness, where clicking on
a statement in the list opens the corresponding source file
in Eclipse and navigates to that line of code. We believe
that this approach has the twofold advantage of (1) letting
us investigate our research questions directly, by having the
participants operate on a ranked list of statements, and (2)
clearly separating the benefits provided by the ranking based
approach from those provided by the use of a more sophis-
ticated interface, such as Tarantula’s visualization [11].

The plugin, shown in Figure 3, works as follows. First,
the user inputs a configuration file for a task by pressing the
load file icon. Once the file is loaded, the plugin displays a
table with several rows, where each rows shows a statement
and the corresponding file name, line number, and suspi-
ciousness score. Besides clicking on a statement to jump to
it, as discussed above, users can also use a previous and next
button to navigate through the statements.

To compute the ranked list of statements for the plugin,
we used the Tarantula formulas provided in Reference [11],
which require coverage data and pass/fail information for
a set of test inputs. For both Tetris and NanoXML, we
collected coverage data using Emma (http://www.eclemma.
org/). For NanoXML, we used the test cases and pass/fail
status for such test cases available from the SIR repository.
For Tetris, for which no test cases were available, we wrote
a capture-replay system that could record the keys pressed
when playing Tetris and replay them as test cases. Overall,
we collected 10 game sessions, 2 of which executed the faulty
statement (i.e., rotated a square block).

Tetris 

NanoXML 

Tetris 

NanoXML 

A B 

Tetris 

NanoXML 

Tetris 

NanoXML 

D C 

Figure 4: Participants are split into different groups
having different conditions. Each box represents a
task: the label in the box indicates the software sub-
ject for the task; the presence of a wrench indicates
the use of the automated debugging tool for that
task; the icons representing an arrow indicate tasks
for which the rank of the faulty statement has been
increased (up) or decreased (down).

4.4.3 Data Availability
Our Eclipse plugin, program subjects, and instructions

sheets are available for researchers wishing to replicate our
study at http://www.cc.gatech.edu/~vector/study/.

4.5 Method
To evaluate our Hypothesis 1, and assess whether partici-

pants could complete tasks faster when using an automated
debugging tool (tool, hereafter), we created two experimen-
tal groups: A and B. Participants in group A were instructed
to use the tool to solve the Tetris task. Conversely, partici-
pants in group B had to complete the Tetris task using only
traditional debugging capabilities available within Eclipse.
If the tool were effective, there should be a significant dif-
ference between the two group’s task completion time.

We investigated our Hypothesis 2, and assessed whether
participants benefited more from using the tool on harder
tasks, by giving the experimental groups a second task: fix
a fault in NanoXML. In group A, participants were limited
to use only traditional debugging techniques available within
Eclipse, whereas in group B, participants could also use the
tool to solve the task. In this case, we compared the dif-
ference in performance for the groups using the tool for the
Tetris and the NanoXML tasks. If the tool were more effec-
tive for harder tasks, the performance gain of participants
using the tool for the NanoXML task should be better than
that of participants using the tool on the Tetris task.

Our Hypothesis 3 aims to understand the effects of the
rank of the faulty statement on task performance. To in-
vestigate this hypothesis, we created two new experimental
groups: C and D. Both groups were given both the Tetris
and the NanoXML tasks and were instructed to use the
tool to complete the tasks. The difference between the two
groups was that, for group D, we lowered the rank of the
faulty statement for Tetris (i.e., moved it down the list) and
increased the rank of the faulty statement for NanoXML
(i.e., moved it up the list). If rank were an important fac-
tor, there should be a decrease in performance for the Tetris
task and an increase in performance for the NanoXML task
for group D.

A summary of the method we used for investigating our
hypotheses can be seen in Figure 4.
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Figure 3: Eclipse plugin for automated debugging based on Tarantula’s ranking.

To answer Research Question 1 on how programmers use
the ranked list of statements provided by the tool, we recorded
a log of the navigation history of the participants that used
the tool. To answer Research Question 2 on perfect bug
understanding, we analyzed the log history to measure the
time between clicking on the faulty statement and complet-
ing the task. Finally, to answer Research Question 3, we
gave the participants a questionnaire that asked them to
describe how they used the tool and report any issues and
experiences they had with it.

4.6 Procedure
Participants performed the study in either a classroom or

our lab. A week before the experiment, we gave the partic-
ipants a chance to install the plugin and test it on a sample
program. At the start of the experiment, the participants
were instructed on the general purpose of the study and were
told that they had a total of 30 minutes to complete each
task, after which they should move to the next task. In to-
tal, we allocated 2 hours for the entire study: 30 minutes for
instruction and setup, 1 hour for the tasks, and 30 minutes
for completing a questionnaire at the end of the study.

To let the participants familiarize with the failures, we
had them first replicate such failures. To measure task com-
pletion time, we instructed participants to record as their
starting time the time when they begun looking at the code
and investigating the failure. To measure the correctness of
a solution and gain a better understanding of how partic-
ipants found the fault, participants were asked to describe
the reason for the failure and how they used the tool to
find it. Once participants were done with their tasks, they
completed the questionnaire about their use of the tool and
experience with it.

5. STUDY RESULTS
We ran an initial experiment with 34 students split be-

tween groups A and B (see Section 4.5). Interestingly, we
were able to find support for Hypothesis 1, but a flaw in the
ranking for NanoXML left us unable to answer our research
questions. We used this initial experiment to improve our
methods and procedures for conducting the experiment.

In the following, we report the results of our main experi-
ment, which was run with 24 students split between groups
A and B. We also report the results of a follow-up experi-
ment with an additional 10 students split between groups C
and D (see Section 4.5).

We show the overall results for this part of the study in Ta-
ble 1 and discuss the significance of these results in terms of
our hypotheses in the following subsections.

5.1 Experts are Faster when Using the Tool
For the Tetris task, the average completion time, in min-

utes and seconds, was 12:42 for group A (tool) and 14:14

Table 1: Successful task completion time in minutes
and seconds for all conditions.

Group Tetris NanoXML

A 8:51 22:30
B 14:28 20:16

C 10:12 15:12
D 12:36 18:30

for group B (traditional debugging). This difference is not
statistically significant by a two-tailed t-test. However, as
we noted above, we did observe a significant difference in
a previous experiment comparing these conditions. For the
NanoXML task, the average completion time, in minutes
and seconds, was 20:16 for group B (tool) and 22:30 for
group A (traditional debugging). These values were also
not significantly different.

Analyzing the results in more detail, we observed that
some participants received a much higher benefit from us-
ing the tool than others. We therefore split the participants
from groups A and B into three groups based on their per-
formance: low, medium, and high performers. The low per-
formers were likely novices, as they were not able to complete
any of the tasks within 30 minutes. The medium performers
were able to complete at least one of the tasks (most often
Tetris), and the high performers could complete both tasks.

Comparing the high performers (N=10) in groups A and
B, the average completion time, in minutes and seconds,
was 8:51 (A) versus 14:28 (B) for Tetris. This difference is
statistically significantly (p < 0.05) by a two-tailed t-test.

Overall, we found support for Hypothesis 1 based on a
significant difference in task completion time for the Tetris
task but not the NanoXML task. However, without im-
provements to the tool, this effect may be limited to experts.

5.2 The Tool did not Help perform Harder
Tasks

We expected the NanoXML task to be more difficult for
participants, and the task completion rate supports this ex-
pectations; comparing completion rates between the Tetris
and NanoXML tasks for groups A and B, nearly twice as
many participants completed the Tetris task, as compared
to NanoXML: 18 (Tetris) versus 10 (NanoXML).

For Hypothesis 2, we expected to see that participants
would receive more benefits when using a tool on a harder
task. To test this hypothesis, we compared the ratio of com-
pletion times for each participant’s Tetris and NanoXML
tasks. If the hypothesis were true, we would expect par-
ticipants in group B to complete the NanoXML task at a
much faster rate (as normalized by their Tetris task time).
The task performance ratios were as follows. Subjects in
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group A performed the Tetris task 2.5 times faster than the
NanoXML task. Subjects in group B performed the Tetris
task 1.3 times faster than the NanoXML task. These values
are significantly different (p < 0.02) by a two-tailed t-test.

According to these results, statistical debugging with the
tool was no more effective than traditional debugging for
solving a harder task. Therefore, we found no support
for Hypothesis 2. Overall, the results suggest that there
might be several factors that can explain why the automated
debugging tool did not help the NanoXML task. In the
discussion ahead, we speculate what these factors may be.

5.3 Changes in Rank Have no Significant Ef-
fects

For Hypothesis 3, we wanted to explore the effect of rank
on the effectiveness of the tool. To assess this hypothesis, we
measured the effect of artificially decreasing and increasing
the rank of the faulty statements. If this hypothesis were
true, we would expect the effectiveness to decrease when
dropping the rank and increase when raising the rank.

As discussed in Section 4.5, we tested this hypothesis by
conducting an experiment with 10 new participants split into
groups C and D. For group C, the rank of faulty statements
was kept intact. For group D, the rank for the faulty state-
ment in Tetris was lowered from position 7 to position 35.
Similarly, the rank for the faulty statement in NanoXML
was raised from position 83 to position 16. (The new ranks
were selected in a random fashion.) This modification of the
ranks should have improved the effectiveness of the tool for
the NanoXML task, and hurt the effectiveness of the tool
for the Tetris task, for group D in comparison to group C.

Comparing the average completion time of the Tetris task
for groups C and D, we did observe that group D (12:36)
was a little slower than group C (10:12). Surprisingly, for
the NanoXML task group D was not any faster than group C
despite the much lower rank of the faulty statement (16 ver-
sus 83). In fact, group D actually performed the NanoXML
task slower than group C—15:12 for group C versus 18:30
for group D.

However, the differences in performance between the groups
were not statistically significant. In fact, a comparison of the
completion time ratio of Tetris to NanoXML yields the same
exact average fraction (.79) for both groups. This suggests
that both groups were very similar in performance. Lower-
ing rank did not hurt the performance of group D on the
Tetris task, nor did raising the rank for NanoXML help im-
prove group D’s performance.

Therefore, overall, the results provide no support for Hy-
pothesis 3. This suggests that the rank of the faulty state-
ment(s) may not be as important as other factors or strate-
gies. The participants may be using the tool to find other
statements that are near the fault, but ranked higher than
the fault. Or they may be searching through the statements
based on some intuition, thus canceling the effect of chang-
ing the relative position of the faulty statement. For ex-
ample, four participants in group D, who had the rank of
the faulty Tetris statement lowered, were able to overcome
this handicap by visiting another statement in position 3
(previously 8) that was in the same function as the bug.
This suggests that programmers may use the tool to iden-
tify starting points for their investigation, some of which
may be near the fault. This would lessen the importance of
correctly ranking the exact line of code with the fault.

5.4 Programmers Search Statements
To answer our Research Question 1 on patterns used by

developers when inspecting statements, we analyzed the logs
produced during the usage of the tool. Specifically, we wanted
to assess whether developers inspected statements in order
of ranking, one by one, or followed some other strategy. We
used the navigation data collected from the 24 participants
in group A and B, of which 22 had usable navigation data.
We also examined the questionnaire of all 34 participants to
gain insight into their strategies for using the tool. Based
on this data, we have determined that programmers do
not visit each statement in a linear fashion. There are
several sources of support for this observation.

First, for each visit, we measured the delta between the
positions of two statements visited in sequence. All partic-
ipants exhibited some form of jumping between positions.
Specifically, 37% of the visits jumped more than one posi-
tion and, on average, each jump skipped 10 positions. The
only exception were low performers (those who did not com-
plete any task), whose majority (95%) cycled through the
statements and very rarely skipped positions. Observing the
number of positions skipped during all the visits, we hypoth-
esize that smaller jumps may correspond to the skipping of
blocks of statements; conversely, larger jumps seem to corre-
spond to some form of searching or filtering of statements—a
hypothesis also supported by the responses in the partici-
pants’ questionnaires.

Second, the navigation pattern was not linear. Partici-
pants consistently changed directions (i.e., they started de-
scending the list, flipped around, and started ascending the
list). We measured the number of “zigzags” in a partici-
pant’s navigation pattern any time there was a change in
direction. On average, each participant had 10.3 zigzags,
with an overall range between 1 and 36 zigzags.

Finally, on our questionnaire given to all participants,
many participants indicated that sometimes they would scan
the ranked list to find a statement that might confirm their
hypothesis about the cause of the failure, whereas other
times they skipped statements that did not appear relevant.

5.5 No Perfect Bug Understanding
To investigate our Research Question 2 on the assumption

of perfect bug understanding, we measured the tool usage
patterns. We looked at the first time a participant clicked
on the faulty statement in the tool, and then examined the
participant’s subsequent activity. If the faulty nature of a
statement were apparent to the developers by just looking
at it, tool usage should stop as soon as they get to that
statement in the list.

We used the log data from the 24 participants in groups A
and B and excluded data for participants that never clicked
on the faulty statement, which left us with data for 10 par-
ticipants. Only 1 participant out of 10 stopped using the
tool after clicking on the fault. The remaining participants,
on average, spent another ten minutes using the tool after
they first examined the faulty statement. That is, partici-
pants spent (or wasted) on average 61% of their time con-
tinuing to inspect statements with the tool after they had
already encountered the fault. This suggests that simply
giving the statement was not enough for the participants
to understand the problem and that more context was
needed, which made us conclude that perfect bug under-
standing is generally not a realistic assumption.
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5.6 Benefits and Challenges
To answer our Research Question 3, we analyzed the ques-

tionnaires completed by the participants. The analysis of
the responses gave us a better understanding of our results,
generated additional explanations for our observations, and
identified potential benefits and challenges involved with us-
ing automated debugging tools. We analyzed this data for
all 34 participants. Most participants reported that the pri-
mary benefit of the tool was to point them in the right di-
rection. They would not necessarily use the tool to find the
exact faulty statement, but rather identified several candi-
date causes for the failure. One participant, for instance,
described the benefit of using the tool in the following way:

“[The plugin] pointed some key statements, setting break-
points on those helped find the problem.”

The experiment results also highlighted a real difference
in the tool effectiveness across tasks. Our analysis of the
answer sheet identified several factors that can help explain
this difference. For the Tetris task, participants could filter
out unrelated statements more effectively based on their ini-
tial hypotheses. Because the failure description was related
to rotation of a square figure, terms such as “rotation”, “ori-
entation”, or “square” could be used to highlight relevant
statements and ignore others, such as drawing routines.

For the NanoXML task, several participants indicated in
their questionnaire that they would eventually abandon the
tool after what they felt was too large a number of false
positives. This suggests that there is a very rapid interest
drop-off if developers cannot feel confident about the results
they receive from the tool. For example, one participant
described how he tried using the statement list, but quickly
abandoned it after a few minutes:

“The ranking list was too long and didn’t help me with
enough context. Actually, I know NanoXML and work
with it, but [...] it was faster to use breakpoints.”

Participants identified several challenges and possible en-
hancements to the functionality of the tool. We list a sum-
mary of those comments here, and discuss them in more de-
tail in the following section. Several participants wanted the
statements in the list to also include runtime values. Fur-
ther, the participants wanted to integrate statements related
to the exception chain with the statements in the ranking.
Some participants wanted more program structure informa-
tion with the statements (e.g., method names). They also
wanted alternative views, different ways of sorting and, in
general, different ways of interacting with the data. Finally,
many participants wanted some sort of explanation for the
presence of a statement in the list and wanted to be able to
trace a statement to its slices and related test cases.

6. DISCUSSION AND FINDINGS
In this section, we describe our findings about the behav-

ior of programmers and discuss possible implications for fu-
ture research in the area of debugging techniques and tools.

6.1 Programmers’ Behavior

6.1.1 Programmers Without Tool Sometimes Fixed
the Failure, Not the Fault

Ideally, when debugging, programmers are guided based
on their understanding of the failure to a root cause. In

practice, however, this does not always happen. Sometimes
programmers discover that, through experimentation and
manipulation of the program, they can stop the failure from
occurring without actually fixing the fault.

We observed several occurrences of this phenomenon in
our study. For example, in the Tetris task, the fault was
due to an invalid configuration of the square figure’s num-
ber of possible orientations. Quite a few participants did
not correct this fault, but instead directly modified the ro-
tation calculation code for the figures to bypass the failure.
Interestingly, all these participants were in groups that used
traditional debugging. No participants who used the rank-
ing tool to fix the fault proposed this type of solution. We
can therefore make the following preliminary observation.

Observation 1 - An automated debugging tool may help
ensure developers correct faults instead of simply patching
failures.

6.1.2 Programmers Want Values, Overviews, and Ex-
planations

Developers used a mixture of the ranking tool (mainly
for fault localization) and traditional debugging (mainly for
fault understanding). If this observation is confirmed in fur-
ther studies, this process could be more tightly integrated
and streamlined. A common reason for engaging in tradi-
tional debugging with breakpoints, for example, was to ac-
quire data values for statements. Since test cases have been
already executed during automated debugging, including a
way to display these values would cut this extra step and
potentially speed up the use of the tool. As an added ben-
efit, displaying values could give developers the ability to
identify suspicious values.

For developers exploring unfamiliar code, an automated
debugging tool can suggest many promising starting places.
Even if the tool did not pinpoint the exact location of the
fault, displaying relevant code entrance points could help
program understanding considerably. This benefit strongly
resonated with the developers in our study. One potential
way to build on this strength would be to explore alternative
interfaces for clustering and summarizing results. For an
initial overview, for instance, developers may want to see
suspiciousness aggregated by methods or files (a direction
recently explored by Cheng and colleagues [2]).

We also identified a need to improve the explanatory ca-
pabilities of automated debugging tools. Developers were
quick to disregard the tool if they felt they could not trust
the results or understand how such results were computed.
The ranking tool we used in the study provided develop-
ers with no traceability between ranked statements, relevant
slices, and test cases. There was no way to identify which
test cases were associated with a statement, or which state-
ments belonged to the same dynamic slice. Better interac-
tions with the underlying data could provide and connect
with one another these additional pieces of information. If
developers were equipped with such information, they would
be empowered to explore the failure in a more methodic and
data-driven manner.

In fact, experienced programmers use methodological and
systematic methods of inspecting code [6, 24]. Unlike tra-
ditional debuggers or program slicers, most ranking based
automated debugging techniques remove any source of co-
herence by mixing statements in a fashion that has no mental
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model to which the developer can relate. When using these
tools, instead of working with the familiar and reliable step-
by-step approach of a traditional debugger, developers are
currently presented with a set of apparently disconnected
statements and no additional support.

Observation 2 - Providing overviews that cluster results
and explanations that include data values, test case informa-
tion, and information about slices could make faults easier
to identify and tools ultimately more effective.

6.2 Research Implications

6.2.1 Percentages Will Not Cut It
A standard evaluation metric for automated debugging

techniques is to normalize the rank of faulty statements with
respect to the size of the program. For example, assigning
the faulty statement in NanoXML (4,408 LOC) with a rank
of 83, when expressed as a percentage, suggests that only
1.8% of statements would need to be inspected. Although
this result, at first glance, may appear quite positive, in prac-
tice we observed that developers were not able to translate
this into a successful debugging activity.

Based on our data, we recommend that techniques focus
on improving absolute rank rather than percentage rank,
for two reasons. First, the collected data suggests that pro-
grammers will stop inspecting statements, and transition to
traditional debugging, if they do not get promising results
within the first few statements they inspect. For example,
even when we changed the rank of the faulty statement in
NanoXML from 83 to 16, there was no observed benefit.
This is consistent with other research in search tasks, where
it is clearly shown that most users do not inspect results
beyond the first page and reformulate their search query in-
stead [7]. Second, the use of percentages underscores how
difficult the problem becomes when moving to larger pro-
grams. Percentages would suggest that we would not have
to change our techniques, no matter whether we are dealing
with a 400 LOC or a 4 million LOC program. From direct
experience with scaling program analyses from toy programs
to industrial-sized programs, we know that this is typically
unlikely to be true.

Better measures can make sure we are using the appro-
priate metric for evaluating what, and to what extent, will
help developers in practice. Otherwise, what may appear
as a successful new debugging technique in the laboratory,
could in reality be no more effective than traditional debug-
ging approaches.

Implication 1 - Techniques should focus on improving ab-
solute rank rather than percentage rank.

6.2.2 Focus More On Search
If current research is unable to achieve good values for

absolute statement ranks, an alternative direction may be
to enrich the debugging techniques by leveraging some of
the successful strategies developers were observed to use. In
particular, it may be promising to focus research efforts on
how search of statements can be improved.

We observed that a common cause of frustration during
debugging is the inability to distinguish irrelevant state-
ments from relevant ones. According to reports from the

participants, some developers successfully overcame this prob-
lem by filtering the results based on keywords in the state-
ments. We found this to be key, as there may be some funda-
mental information in the developer’s mind that, when com-
bined with the automated debugging algorithm, may yield
excellent results.

For example, in the NanoXML task, developers noted that
using terms such as “index” or “colon” to filter through the
results could help them find a result that matched their sus-
picion. In fact, had the developers searched for any of the
terms “index”, “colon”, “prefix”, or “substring”, they could
have filtered the statements so that the faulty one was within
the first five ranked results. Unfortunately, performing this
search manually among many results can be difficult in prac-
tice, whereas the combination of ranking and search could
be a promising direction.

Besides combining search and ranking, future research
could also investigate ways to automatically suggest or high-
light terms that may be related to a failure. This would help
in cases where a developer does not know the right terms to
search for and could be done, for instance, based on the
type of the exception raised or other contextual clues. It
may even be that, given good search tools, developers could
discover that the rank of a faulty statement does not matter
as much as the search rank.

Implication 2 - Debugging tools may be more successful
if they focused on searching through or automatically high-
lighting certain suspicious statements.

6.2.3 Grow the Ecosystem
The way performance (with respect to time) is computed

in many studies makes assumptions that do not hold in prac-
tice. Like test suite prioritization, with automated fault lo-
calization the total time saved by configuring and using the
tool should be less than the time spent using traditional de-
bugging alone. In practice, at least in some scenarios, the
time to collect coverage information, manually label the test
cases as failing or passing, and run the calculations may ex-
ceed the actual time saved using the tool.

In general, for a tool to be effective, it should seamlessly
integrate the different parts of the debugging technique con-
sidered and provide end-to-end support for it. Although
some of these issues can be addressed with careful engineer-
ing, it may be useful to focus research efforts on ways to
streamline and integrate activities such as coverage collec-
tion, test-case classification and rerunning, code inspection,
and so on.

Implication 3 - Research should focus on providing an
ecosystem that supports the entire tool chain for fault lo-
calization, including managing and orchestrating test cases.

6.3 Threats to Validity
We choose a time limit for tasks that made it possible to

conduct our experiment within a two-hour time frame, so as
to avoid exhausting participants. However, this time limit
might have excluded less experienced participants who may
need more time to complete the tasks. Our study has fo-
cused on more experienced developers, many of which could
complete the tasks within the time limit, and may not gen-
eralize to novice users.

207



The participants of our study were students who may not
have the same experience of professional developers, which
could limit what can be concluded from the study. That
said, some of the participants had several years of industrial
experience as developers, and even more had at least some
experience as developers during internships. Moreover, we
observed that students with industrial experience and stu-
dents without industrial experience performed comparably
in the high-performers group.

A threat to external validity is the nature of programming
tasks we selected and the fact that the developers were unfa-
miliar with the code being debugged. Programmers may not
be able to effectively utilize their domain knowledge when
debugging unfamiliar code. In practice, however, developers
tend to work with both familiar and unfamiliar code, espe-
cially when they are part of larger teams. Although we could
observe only one of these two cases, these types of tasks
are representative of many real-world debugging activities
(e.g., bug fixes where developers need to understand some-
one else’s code well enough to make a corrective change).
Moreover, we believe that Tetris is a well understood and
simple enough application that it can mimic the role of a
familiar application for the developers.

Another threat to external validity is the fact that we
considered only two subject programs and two faults within
these programs. Our results may therefore not generalize to
other programs and faults, and more experiments are needed
to confirm our initial observations and analyses. Neverthe-
less, our results are promising and allowed us to make some
interesting, albeit preliminary, observations that justify fur-
ther studies and provide a methodology for conducting such
studies.

A final threat to validity relates to the nature of the failure
information. The fault for Tetris had no readily available
entry point. In contrast, the fault for NanoXML had a stack
trace available. Programmers without a tool, could use this
stack trace as a starting point for their investigation. This
difference might explain the success of the tool for Tetris and
not for NanoXML. Several participants stated that, when
debugging the Tetris failure, the tool helped pointing them
in the right direction. Had a stack trace (i.e., a starting
point for the investigation) been available for Tetris too, the
tool might not have been as beneficial. Nevertheless, our
results show that when no such information is available, as
it is common for failures that do not result in a crash or an
exception, the tool can be helpful.

7. CONCLUSION
For 30 years, researchers have envisioned how automated

debugging tools can help developers fix defects in code. In
this paper, we had real programmers act this vision out and
obtained both positive and negative results. In particular,
developers could use a ranking based tool to complete a task
significantly faster than without the tool, but this effect was
limited to more experienced developers and simpler code.

One might argue that the point of ranking is not to help
humans, but rather to measure and evaluate algorithms;
only when algorithms are capable of consistently ranking
faulty statements at the top should programmers start us-
ing the tools. But what if we never get to that point? Even
when using an artificially-high rank, we found that the rank-
ing tool considered was no more effective than traditional
debugging for our more challenging task. If we are having

trouble with small programs, what about large ones? The
goal line for industrial-sized programs is moving faster and
further away. The weaknesses observed in the ranking tool
we used may indicate general shortcomings in today’s auto-
mated debugging techniques that limit their effectiveness.

Based on our experience while working with 68 develop-
ers1 that used our representative ranking tool, we have gath-
ered several observations and identified several implications
that may help define future research directions: empirical
studies should use absolute rank for evaluating debug-
ging algorithms, so as to account for interest drop-off in
programmers’ investigation and support scalability to larger
programs; researchers should investigate the combination of
search and ranking to associate a search rank to state-
ments; tools should integrate the different activities involved
in debugging and provide a complete ecosystem for de-
bugging; finally, researchers should perform more human
studies to understand how the use of richer information
(e.g., slices, test cases, values) can make debugging aids
more useable.

Programmers have been waiting a long time for usable
automated debugging tools, and we have already gone a long
way from the early days of debugging. We believe that, to
further advance the state of the art in this area, we must
steer research towards more promising directions that take
into account the way programmers actually debug in real
scenarios.
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