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Abstract—Code reading is an important skill in programming.
Inspired by the linearity that people exhibit while natural lan-
guage text reading, we designed local and global gaze-based mea-
sures to characterize linearity (left-to-right and top-to-bottom) in
reading source code. Unlike natural language text, source code is
executable and requires a specific reading approach. To validate
these measures, we compared the eye movements of novice and
expert programmers who were asked to read and comprehend
short snippets of natural language text and Java programs.

Our results show that novices read source code less linearly
than natural language text. Moreover, experts read code less
linearly than novices. These findings indicate that there are
specific differences between reading natural language and source
code, and suggest that non-linear reading skills increase with
expertise. We discuss the implications for practitioners and
educators.

I. INTRODUCTION

For over five thousand years, human history has been written

down in a variety of forms which represent our cognitively rich

natural spoken languages. Even when manifested in written

form, the lexical, syntactic, semantic, and cultural complexities

inherent in spoken communication make reading and writing

difficult skills to learn and master.
For over fifty years, computer programs have been written

in a variety of source code languages. While having no

commonly spoken form, the design of source code languages

is inspired by natural languages, each with its own formal

style. Though computer programs are primarily thought of as

being executed by a computer, their source code form must

be understandable in order to be read and written by humans.

To become an expert computer programmer, one must master

source code reading and writing skills.
Fortunately, programmers can leverage their mastery of

natural language literacy to learn to read and write source code

(SC). However, programs differ from natural language texts

(NT) in two important ways. First, programs are lexically and

syntactically different from natural language texts. Lexically,

they are composed from a limited vocabulary, with some words

used as programming language keywords, and others used

more freely as identifiers to name program constructs like

variables and methods. Programmers must consciously choose

meaningful names in order to communicate to others what the

program does and how it works [17]. Syntactically, programs

are laid out and organized differently than natural language

texts. They feature greater use of formally defined structures

and multiple forms of indented layout (both horizontal and

vertical).

The second difference is semantic. According to the Kintsch

text comprehension model [15], natural language text is

typically understood in two concurrent phases: text (how

it is written down) and domain (what it means). Source

code comprehension however needs a third dimension of

comprehension: execution [22]. Thus, in order to understand

a program’s goals, programmers must not only master the

ability to read its words and structures, but must also be

able to trace source code execution to discover its operational

semantics [23]. Sorva [28] posits that expert programmers

rarely make an explicit distinction between text structure and

text execution because they feel it is obvious. This might not

be so obvious for novices.

For the past two years, we have organized workshops

focusing on the interpretation of eye tracking data for pro-

gram comprehension [6]. We and others have come to the

realization that due to the similarities between source code and

natural language, many of the same processes must underlie

source code reading [25]. In this paper, we illustrate how we
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have adapted eye movement-based metrics used originally to

characterize natural language reading to describe how novice

and expert programmers read source code. Specifically, we

expanded on the concept of linearity in reading, and developed

and tested several linearity metrics.

Linearity represents how closely readers follow a text’s

natural reading order — the top-to-bottom, left-to-right path

in which words are written in Latin script languages like

English.1 Proficient natural language readers are known to

maintain comprehension even though they skip words as they

read and reread words less frequently than novice readers

(i.e., children learning to read) [20]. Based on the observation

that novice programmers seem to read source code “just as

one might read a story in a natural language, starting at the

beginning and reading through to the end” [26], we introduce

the term story reading for this reading behavior.

The research questions we address in this paper are

• RQ1: Do the linear trends observed in natural language

reading hold for novices reading source code?

• RQ2: With respect to reading linearity, how do novices

reading source code differ from experts?

Here, we operationalize linearity using two sets of metrics

based on gaze. The set of local metrics include the fraction of

gaze locations that move with or against story reading order

(measured in elements and lines). Our set of global metrics
is based on fixation sequences and quantifies how closely a

participant follows a particular reading pattern. These metrics

assess the participants’ degrees of alignment to two reading

orders: story reading and execution order.

We evaluate these metrics in a study that had novice and

professional programmers perform computer-based compre-

hension tasks on short English texts and also on programs

written in Java and pseudocode, while being monitored with

an eye tracking device.

Our results show that novice participants read code less

linearly than they read English text. 80% of the the novices’

eye movements were linear when reading natural language text

and 70% when reading source code. For experts on the other

hand, we found only 60% linear eye movements on source

code. The experts’ reading patterns can be characterized by a

greater number of eye gaze movements that skip intermediate

words and lines.

The contributions of this paper include:

1) Operationalization of linearity metrics for reading source

code

2) Validation of these metrics for natural language reading

and source code

3) Characterization of differences in reading behaviors be-

tween novice and expert programmers

4) Automatic detection of story and execution order source

code reading patterns

1While many natural languages follow other word orders, programming
languages almost always follow the Latin script reading direction.

II. BACKGROUND

We present a brief description of eye tracking research

necessary to understand the measures presented later and

discuss eye tracking studies on reading natural language text

and program comprehension with a focus on the latter.

Many previous eye tracking studies conducted on natural

text reading provide abundant insights into the visual attention

behavior. During reading, the eye stays upon one location for a

few hundred milliseconds and then moves to the next location.

This relatively steady state between eye movements is called a

fixation. The amount of time spent in the location is the fixation
duration. The movements that re-position the eyes’ focus over

the text are saccades. Processing of visual information occurs

only during fixations. Backward movements in the text are

called regressions; about 10 to 15% of fixations are regressive.

Good readers are characterized by few regressions and short

fixations. Difficult texts usually induce longer fixations, short

saccades and frequent regressions. Fixation duration has been

shown to be positively correlated with cognitive effort. See

Rayner et al. [19] for a detailed description on eye movements

in reading.

In the programming domain, however, there have been only

a few notable works to report on the nuances of gaze in code

reading. One of the pioneering studies of the role of gaze

in programming [9] suggests that viewing strategies when

reading short, but complex algorithms differ from those of

natural language. Crosby et al. [8] also found that novices do

not use beacons as discussed by Brooks [3], whereas experts

focus mainly on them. Uwano et al. [30] identify a pattern

called Scan during which programmers read the entire code

snippet to get an idea of what the program does. They state

that 70% of lines in source code were seen in the first 30%

of time spent. A replication of this experiment confirmed the

finding [24].

Both Fan [10] and Busjahn et al. [5] conducted eye tracking

studies on short source code programs. Fan showed that code

scanning patterns of programmers are related to the way the

programs were commented i.e., programmers could chunk

larger code blocks if comments were present. However, the

presence of comments did not improve the identification of

beacons. Busjahn et al. noted a few basic differences between

reading source code and natural language text, e.g. increased

fixation durations and regression rates for code.

Hansen et al. [12] investigated factors that impact code

comprehension. They studied 10 Python programs with subtle

differences between them with the task of predicting the

output. They conducted a standard questionnaire-based online

version and an eye tracking version of the study. Results

from the questionnaire-based study indicate that even subtle

notation changes can have a large effect on the performance

of programmers. The results of the eye tracking part of their

study are pending.

Turner et al. [29] used an eye tracker to compare short

C++ and Python programs in a between-subjects study. The

38 students were asked to find a logical error in the programs.

256

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 16,2023 at 20:37:22 UTC from IEEE Xplore.  Restrictions apply. 



Students spent significantly different amounts of time look-

ing at the lines with bugs than the other code lines when

comparing their behaviors between programming languages.

Novices had higher fixation rates on buggy lines in Python,

whereas non-novices had higher fixation rates on buggy lines

in C++. The authors call for more studies to determine other

differences between languages.

Bednarik et al. [2] found that repetitive gaze patterns were

associated with less expertise when students were debug-

ging Java programs using a program visualization system.

Rodeghero et al. [21] found that 10 developers looked more

at a method’s signature than its body when they were asked

to summarize Java methods while being recorded by an eye

tracker. Fritz et al. [11] conducted a study with 15 developers

and used signals from eye tracking, electroencephalogram

(EEG), and electrodermal activity (EDA) sensors to predict

if developers found a task to be difficult. The task was to read

short C# programs and answer multiple choice questions about

what the program did. Their results show that eye tracking

measures such as fixations, saccades, and pupil size were

important to predict task difficulty.

Siegmund et al. [25] conducted a study with 17 program-

mers inside an fMRI scanner. The programmers were asked to

comprehend short source code snippets. They find a distinct

pattern active in five brain regions, all necessary for program

comprehension and that language processing is an essential

part of program comprehension.

In our most recent work [6], we provide an introduction on

how to use eye tracking to study programmer behavior while

reading code. A tiered coding scheme was developed to further

understand existing program comprehension strategies [1],

[3], [16], [27]. Both objective and subjective behaviors were

coded. The scheme includes codes based on the location of

a single fixation as well as codes characterizing sequences of

multiple fixations, called patterns. For example, some patterns

introduced were Linear Scan (where gaze moves linearly

through parts of the code) and Jump Control (where gazes

follows code execution order).

None of the studies mentioned discuss the concept of

linearity and whether or not the linearity effect in reading

natural languages transfers to reading of source code. We

believe this is an important step taken for further research

using eye tracking in program comprehension.

III. STUDY

In this section, we describe our study: participants, tasks,

experimental procedures, measures, and threats to validity.

A. Participants

Our study looked at the similarities and differences in two

populations: novice and expert programmers.

We conducted a longitudinal study with 14 novices, who

attended a Java beginner’s course at Freie Universität Berlin.

Participants were primarily recruited via flyers posted on

the university’s bulletin boards. With the exception of two

participants, all the others were university students (none in

public class Vehicle{
String producer, type;
int topSpeed, currentSpeed;
public Vehicle(String p, String t, int tp){
this.producer = p;
this.type = t;
this.topSpeed = tp;
this.currentSpeed = 0;

}
public int accelerate(int kmh){
if ((this.currentSpeed + kmh) > this.topSpeed){

this.currentSpeed = this.topSpeed;
} else {
this.currentSpeed = this.currentSpeed + kmh;

}
return this.currentSpeed;

}
public static void main (String args[ ]){
Vehicle v = new Vehicle("Audi","A6",200);
v.accelerate(10);

}
}

LISTING 1. Sample program presented to both novices and experts

computer science). We provided a participation statement if

requested (no grade was given). During the weekly Java class

they individually worked through an online course,2 while

there was a tutor present to provide assistance. Students were

allowed and encouraged to seek help from their classmates.

The course consisted of six modules, each spanning several

weeks. These modules covered objects, classes, fundamental

data types, decisions, and loops. The students’ eye movements

were recorded after they finished each module. Several partici-

pants dropped the course eventually, leading to a sparse dataset

in later modules.

We also recruited a group of six professional software

engineers who worked at different software companies in

Berlin. The participants were promised that all data and anal-

yses about their participation would be anonymized and kept

confidential from their employers. No one was remunerated

for participating.

All study participants filled out a demographic questionnaire

about their age, gender, proficiency with English, and their

programming skills and experience. The novices, who were

between 19 and 33 years old, included 7 females. The experts

were between 26 and 49 years old and only included one

female. While everyone had at least medium English profi-

ciency, German was their primary language (except one novice

who spoke French). The novices self-reported having little

to no prior programming experience, experts’ programming

experience ranged from 5 to 28 years and all were proficient in

several programming languages including Java. At the time of

the recording, all were employed as professional programmers.

B. Experimental Procedure and Materials

The expert participants were studied individually at their

offices or in another location of their choice. The novice

2http://www.udacity.com/course/cs046
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participants were recorded after finishing each of the six

modules directly in the classroom.

Each participant was set up with an SMI RED-m remote

eye tracker set to sample at 120 Hz. All of the eye tracking

data was recorded by the open-source tool Ogama (OpenGaze-

AndMouseAnalyzer).3 Once a participant ran the eye tracker’s

calibration routine, he or she was ready to begin. Before the

first recording on SC, novices were asked to read three English

language passages of four to five lines. Each participant was

given the texts in a randomly selected order. After finishing

the text in each trial, they had to answer a comprehension

question.

Each module’s recording session consisted of asking the

novice participants to read a set of three programs ranging

from a few lines to an entire screen full of text. Two of

these programs were in English pseudocode, the others were

complete Java classes. When required, the source code also

included specific inputs to determine an execution order.

Experts looked at six programs in total, two of which were

the same ones that novices saw in the latter weeks of the

study. An example of one of these programs can be seen in

Listing 1. The remaining programs were comparable in length

to the novices’ stimulus material, however, they were more

complex and included concepts the beginner’s course did not

cover, in order to prompt experts to actually use their advanced

programming skills.

Immediately after reading each program, the participants

were asked one of three possible questions: (1) write a

summary of the code, (2) write the value of a variable after

program execution, or (3) answer a multiple-choice question

about the algorithmic idea. The order of programs and tasks

given to the participant were both shuffled for each trial to

avoid any bias caused by coupling a certain program to a

specific question.

In total, we recorded 17 trials of novices reading natural

language texts, and 101 trials of novices reading source

code. 35 of these 101 source code trials occurred just after

participants finished their first module. The remaining 66 trials

were conducted as the novices finished their next five modules.

Some experts did not finish reading the Java programs

during their recording session. In total, we were able to record

21 trials. When answering RQ2, we compare these 21 trials

against the 101 novice trials.

C. Measures

There are two independent variables in our experiment:

whether the participant is from the novice or expert pro-

grammer sample population and whether they read a natural

language text or source code.

We developed nine dependent measures (see Table I) and

used them to analyze data records from an eye tracking

device. These consist of a time-ordered sequence of gaze

fixations, each containing a gaze location (combining both

eyes to produce a single (X, Y) screen coordinate) and the

3http://www.ogama.net

fixation’s duration (in milliseconds). The gaze coordinates are

then mapped to line and word positions in the texts read by

each participant using a tool called EyeCode.4

Participants do not always fixate on words on the screen;

sometimes they look at empty space nearby. We were able

to map 90.51% of the natural language fixations to a line of

text. For the source code trials, we could map 82.88% of the

novices’ fixations and 72.72% of the experts’ fixations to lines

in source code.

The first five of our measures are computed from the fixated

line and word positions. They represent the fraction of gaze

records (per trial) where the participant moved their eyes with

or against the linear reading order.

The next measure, Saccade Length, is the average distance

between the participant’s two consecutive fixations in each

trial. It is commonly found in prior eye tracking studies that

experts are more likely to make longer saccades than novices.

Element Coverage measures the percentage of words (i.e.,

source code elements) in the text that the participant looked at.

Experts are known to be better able to focus on fewer, more

relevant, words in the source code than novices can.

The last two measures indicate to what extent the partici-

pants’ gaze followed the models Story Order and Execution
Order. Story Order represents reading the program line by

line, from top to bottom, the way natural-language text is

generally read. Execution Order stands for reading the lines

according to control flow. In order to compare how well the

participants’ actual gaze path matches these models, we em-

ploy an optimal string matching algorithm called Needleman-

Wunsch (N-W), which has been applied to sequences of eye

movements before by Cristino et al. [7]. This string algorithm

computes a global similarity score, where a high score implies

that the two sequences are close to each other. For instance,

a person’s score of 10 asserts a higher accordance with the

order of lines specified by the model than a score of 1.

The N-W algorithm is often applied to compute the simi-

larity of DNA and protein sequences, where both sequences

possibly contain mutations. However, in our settings only

one sequence can have mutations, namely the gaze, while

the model presents the prototype. Subsequently, the goal is

to determine how far the gaze is from the respective model.

Mutations in the model are less acceptable than mutations in

the gaze, so we need to keep the model in one piece as much as

we can. Thus, we penalize a gap in the model more than a gap

in the gaze sequence. Gaps will be preferentially inserted into

the gaze sequence rather than the model. To operationalize

this, we designed the following scoring scheme: +3 for a

match, -3 for a mismatch, -1 for a gap in the participant’s

gaze, and -2 for a gap in the model.

The approach to compare the gaze to the exact model is

however slightly naı̈ve, since texts are usually read more than

once. Thus, we adapted the alignment measure to identify

where the participant reread the text in order to find the

optimal alignment between model and gaze. We realize this

4https://github.com/synesthesiam/eyecode
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TABLE I
GAZE-BASED MEASURES. IN EACH TRIAL, F IS THE SET OF ALL RECORDED FIXATIONS. Fi (WHERE i = {1, . . . , n}) IS THE FIXATION RECORDED AT

TIME INDEX i. L(Fi) IS THE LINE NUMBER OF THE FIXATION AT INDEX i. IN EACH TRIAL, W IS THE SET OF WORD INDICES IN THE TEXT. W (Fi) IS THE

WORD NUMBER OF THE FIXATION AT INDEX i.

Measure Definition Computation

Vertical Next Text
% of forward saccades that either stay on the same
line or move one line down.

% of all Fi, where L(Fi)− L(Fi+1) = {0,−1}

Vertical Later Text
% of forward saccades that either stay on the same
line or move down any number of lines.

% of all Fi, where L(Fi) ≤ L(Fi+1)

Horizontal Later Text % of forward saccades within a line. % of all Fi, where L(Fi) = L(Fi+1)∧W (Fi) ≤W (Fi+1)

lo
ca

l

Regression Rate % of backward saccades of any length. % of all Fi, where W (Fi) > W (Fi+1)

Line Regression Rate % of backward saccades within a line. % of all Fi, where L(Fi) = L(Fi+1)∧W (Fi) > W (Fi+1)

Saccade Length
Average Euclidean distance between every succes-
sive pair of fixations.

∑n−1

i=1
Distance(Fi, Fi+1)

|F | − 1

Element Coverage Fraction of words the participant looked at. % of W for
|Unique(W (Fi))|

|W |

g
lo

b
al

Story Order
N-W alignment score of fixation order with linear
text reading order.

Alignment(L(F ), Story-Order-Pattern)

Execution Order
N-W alignment score of fixation order with the
program’s control flow order.

Alignment(L(F ),Execution-Order-Pattern)

by repeating the model and aligning this extended model

sequence to the gaze. This dynamic approach finds the optimal

number of repeats by iteratively appending a copy of the model

and computing the similarity score until the lengths of the

gaze and model sequences correspond with one another. In

the end, the algorithm returns the alignment with the highest

score together with the number of model repetitions used to

achieve it. Each model instance in this final sequence denotes

one pass through the text.
Table II illustrates the procedure for Story Order (Line 1,

2, 3, 4) and Execution Order (Line 1, 2, 3, 4, 2, 3, 4, 2) with

the sample code in Listing 2 and a participant’s actual gaze

sequence (Line 1, 2, 3, 1, 2, 3, 2, 3, 2, 1, 2, 1, 3, 4, 3, 2).

Repeated fixations within the same line have been removed.
When testing how close the participant’s gaze is to Story

Order (i.e. Line 1, 2, 3, 4), we get a naı̈ve score of only -12. We

can improve the alignment if we also assess how many times

the participant read through the program. If the participant

read the text 4 times, then we would get a dynamic score of

24. Looking at Execution Order, the naı̈ve score is 2, while the

dynamic score is 24. The participant followed the control flow

twice. Looking at the exact models, this participant read the

program more according to control flow than line-wise from

top to bottom. When comparing the gaze to multiple instances

of the model, both models achieve the same score, however

with 4 repetitions for the shorter Story model and only 2 for

Execution. Since the sequences are of comparable length now,

there are less gaps reducing the score.

1 n = 3
2 while (n > 1):
3 print n
4 n = n - 1

LISTING 2. Code with Story Order: Line 1, 2, 3, 4 and Execution Order:
Line 1, 2, 3, 4, 2, 3, 4, 2

D. Threats to Validity

As mentioned before, some novice participants dropped out

of the course and did not finish all of the trials. This does

not affect RQ1 (comparing novices reading natural language

vs. source code in module 1), as we are only interested in the

early novice.

When considering RQ2, we pool together novice trials

across several modules, so some trials represent novices with

up to 10 hours more coding experience than others. We

highlight this explicitly, however we always compare novices

only to the pool of expert programmers who have orders

of magnitude greater and more frequent coding experiences.

While the pooled data does not allow for fine-grained analyses

of the novices’ progress, it covers a broad range of novice

behavior. According to a multinational study [18], student

programmers show difficulty comprehending small programs

like those we use even after a whole year of CS study.

In order to reduce bias by the stimulus programs, both sets

of stimulus programs were designed to cover a range of con-

cepts and varied in facets like identifier naming conventions.
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TABLE II
SAMPLE ALIGNMENTS FOR LISTING 2 (EVERY SECOND MODEL REPETITION IS HIGHLIGHTED).

Approach Alignment Score Repetitions

Naı̈ve
model : − − − − − − − − − 1 2 − 3 4 − −

| | | |
gaze : 1 2 3 1 2 3 2 3 2 1 2 1 3 4 3 2

-12 1

Story Order

Dynamic
model : 1 2 3 4 1 2 3 4 1 2 3 4 1 2 − 3 4 − −

| | | | | | | | | | | |
gaze : 1 2 3 − 1 2 3 − − 2 3 2 1 2 1 3 4 3 2

24 4

Naı̈ve
model : − − − 1 − − 2 3 − 4 2 − 3 4 − 2

| | | | | | |
gaze : 1 2 3 1 2 3 2 3 2 1 2 1 3 4 3 2

2 1

Execution Order

Dynamic
model : 1 2 3 4 2 3 − 4 2 1 2 − 3 4 2 3 4 2

| | | | | | | | | | | |
gaze : 1 2 3 1 2 3 2 3 2 1 2 1 3 4 − 3 − 2

24 2

When mapping the gaze coordinates and the on-screen texts,

we found that despite calibrating the eye tracker to each

participant prior to every task, the recorded gaze location

often appeared too low or too high. In much rarer cases, it

was also shifted to the left or right. This kind of error can

happen when the participant moves his or her head too far

relative to the screen. We needed to correct these errors, but

were wary of introducing additional bias. The authors worked

together in pairs to collaboratively produce a corrected version

for every trial. When there were disagreements, they rechecked

the scanpaths and arrived at a consensus to determine the final

corrected offset.

The first five measures can be computed directly from the

screen coordinates, without requiring any corrections to the

correspondence map. To further increase validity, we also

filtered out fixations which were clearly outside the bounding

box of the text (over 100 pixels outside) as unmapped. We

compared our measures computed on this uncorrected data to

the same measures computed on the corrected data and found

that 98–100% of the measures were in agreement.

In our study, we operationalize reading linearity with seven

fixation-based measures and two global measures. The linear-

ity of natural language reading can be measured using just

the regression rate [13]. However, this single measure misses

relevant aspects of source code reading. For example, source

code texts contain shorter horizontal passages than typical

natural language texts, sometimes having just one source code

element on a line. Our mix of horizontal and vertical measures

provides a more detailed description of the reading patterns.

IV. RESULTS

A. Novices: Natural Language versus Source Code

We first report on the linearity measures for novices reading

natural language text and source code at the beginning of their

Java course (Module 1). We expected that since novices lack

any specialized reading strategies for source code, they would

make use of their usual linear reading approach that they apply

to reading natural language. We should therefore see that the

linearity measures are similar in the two conditions.

Considering that the participants were non-native English

speakers, the regression rate of 15.62% for NT is well in

accordance with the 10 to 15% reported for English text [19].

Notice in Figure 1 that the measures Vertical Next Text,

Vertical Later Text, and Horizontal Later Text are higher for

natural language text than for source code, since they indicate

linearity. Regression Rate and Line Regression Rate, on the

other hand describe non-linear reading. Consequently they

show a lower rate.

The novices followed the linear Story Order on natural

language texts with approximately 80% of their eye move-

ments (computed as the non-regressive portion of saccades),

and Module 1 source code still with 75%.

Due to the sparseness of the data set, tests for normality

are not appropriate, hence we employed the non-parametric

Wilcoxon Signed Rank test for matched samples. We found

that for the first four measures shown in Figure 1, Vertical

Next Text, Vertical Later Text, Horizontal Later Text, and

Regression Rate the differences are statistically significant (see

Table III). Only Line Regression Rate was comparable for the

two types of text. The test statistic W provides the sum of the

positive ranks. The values of 21 and 0 respectively indicate that

the direction of the differences was persistent for all pairs.

TABLE III
WILCOXON SIGNED RANK TEST FOR NATURAL LANGUAGE VS. SOURCE

CODE (MODULE 1)

Vertical Next Text: W (6) = 21,Z = 2.20, p = 0.03∗
Vertical Later Text: W (6) = 21,Z = 2.20, p = 0.03∗

Horizontal Later Text: W (6) = 21,Z = 2.20, p = 0.03∗
Regression Rate: W (6) = 0, Z = −2.20, p = 0.03∗

Line Regression Rate: W (6) = 13,Z = 0.52, p = 0.69

Furthermore, we compared the average Saccade Length

for natural language and the Java source code in Module 1.

Novices have a significantly higher average saccade length
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Fig. 1. Linearity measures for novices.

(2.28◦ of visual angle (98.13 pixels)) when reading natural

language text than when reading source code (Module 1)

(1.68◦ of visual angle (71.44 pixels)): W (6) = 21, Z =
2.20, p = 0.03∗.

When comparing Element Coverage, novices looked at an

average of 83.46% of the words in the natural language texts,

but only at 60.38% of the source code elements (i.e. keywords

and identifiers) in the Java code for Module 1. The difference

is statistically significant: W (6) = 21, Z = 2.20, p = 0.03∗.

TABLE IV
N-W RESULTS COMPARING THE STORY ORDER FOR NATURAL

LANGUAGE TEXTS AND SOURCE CODE (MODULE 1).

Natural
Language

Source Code
(Module 1)

Naı̈ve N-W Score -29.82 -24.11
Story Order Dynamic N-W Score 25.88 23.71

Repetitions 6.35 3.89

Finally, we tested the alignment of reading natural language

and source code (Module 1) to Story Order (see Table IV).

We present two N-W global alignment scores. The first

(naı̈ve) compares the participant’s line order with the story

order sequence. The second (dynamic) allows the story order

sequence to repeat a number of times. The participant’s line

order was compared with the story order sequences repeated

an increasing number of times until it maximized the N-

W score for the participant’s fixations in that trial. This

accounts for the fact that the text is read several times. Note

that the scores for natural language and the source code

in Module 1 are very similar to one another. There is no

statistically significant difference between natural language

and the source code in Module 1, not for the (naı̈ve) score

(W (6) = 9.5, Z = −2.20, p = 0.91), nor the dynamic

score (W (6) = 12, Z = 0.31, p = 0.84). This supports

our expectation that novices start out with a primarily linear

approach to reading code. The results indicate that both the

natural language text and source code were read multiple

times, but participants read the natural language text 6.35 times

vs. 3.89 times for source code. The greater the number of

repeated read-through, the higher the N-W alignment score

will be.

RQ1 asked if the story reading approach holds true for

novices reading source code (Module 1). The N-W score,

reflecting the general reading approach aligned to the linear

Story Order, and Line Regression Rate are comparable for

natural language and source code (Module 1). However, we

find significant differences for the local measures Vertical Next

Text, Vertical Later Text, Horizontal Later Text, Regression

Rate, Saccade Length, and Element Coverage.

B. Novices vs. Experts

In this section, we report on the linearity measures that

compare experts reading source code to novices (at any stage

in the Java course) reading source code. We combined all of

the novices’ trials from every module in the class, and not

just module 1 as we did for RQ1. We expect that since the

novices rely on their natural language text reading behaviors

when reading source code, there will be significant differences

between them and the experts. We note that the novices and ex-

perts read different programs (for the most part; two programs

were read by both sets of participants). Since the novices were

enrolled in the Java class, their programs were tailored to be

accessible to their (considerably lower) experience level. In

this section, we report statistics that compare the novices to

the experts reading their respective programs.

In Figure 2, we show the results of our first five measures

comparing the pool of novices to the pool of experts (Figure 2).

The measures for linearity Vertical Next Text, Vertical Later

Text, and Horizontal Later Text are higher for novices than

for experts. The same holds true when computing the non-

regressive portion of the saccades, 70% linear eye movements

for novices and 60% for experts. Since normality cannot
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Fig. 2. Comparison of linearity measures for novices and experts reveals more linear behavior in the eye movements.

be assumed and we have two different samples, we tested

these differences with the non-parametric Mann-Whitney test.

We found that the differences are statistically significant for

all measures except Line Regression Rate (see Table V),

indicating that experts have a less linear reading behavior for

code than the novices.

Next, we calculated the average Saccade Length for all

modules and source codes. Novices’ saccades had an average

length of 1.86◦ of visual angle (80.26 pixels), while experts’

saccade covered 3.12◦ of visual angle (133.90 pixels). A

Mann-Whitney test indicates that average novices’ saccades

were significantly shorter than experts’: U = 105, p <
0.001∗∗∗. This result matches our expectations that experts are

able to make larger jumps during reading to focus on important

source code elements.

With regard to Element Coverage, we found that novices

directly looked at 52.42% of the source code elements, while

experts looked at just 41.27% of the elements. Again, the

difference is significant, U = 84, p < 0.01∗∗. This result

implies that experts are better able to focus on the relevant

source code elements than novices, and is in line with previous

studies on expertise.

Finally, we compared the alignment of the novices’ and ex-

pert reading order. The results are shown in Table VI. One can

see that novices read source code much more linearly (i.e., in

Story Order) than the experts did because the novices’ higher

scores indicate better alignment with the Story Order model.

This difference is significant both for naı̈ve and dynamic

scores: U = 82, p < .001∗∗∗ and U = 84, p < .0001∗∗∗,

respectively.

TABLE V
MANN-WHITNEY RESULTS FOR NOVICES VS. EXPERTS

Vertical Next Text: U = 81, p < 0.001∗∗∗
Vertical Later Text: U = 76, p < 0.01∗∗

Horizontal Later Text: U = 84, p < 0.001∗∗∗
Regression Rate: U = 0, p < 0.001∗∗∗

Line Regression Rate: U = 41, p = 0.97

TABLE VI
N-W RESULTS COMPARING NOVICES AND EXPERTS IN STORY AND

EXECUTION ORDER.

Novices Experts

Naı̈ve N-W Score -73.47 -161.52
Story Order Dynamic N-W Score -12.82 -113.62

Repetitions 5.36 3.95

Naı̈ve N-W Score -77.27 -89.81
Execution Order Dynamic N-W Score 8.68 -46.50

Repetitions 6.69 2.56

The low, negative Story Order global alignment scores for

experts indicates that Story Order is not a good model for

their reading behavior. Instead, notice that the Execution Order

scores are higher, indicating a better fit with an order matching

the control flow of the program.

Also, one can see that the number of repetitions of both the

text and execution order line number sequences is much lower

for experts than for novices. This indicates that the experts

were more efficient in their reading of the source code than

novices, agreeing with the Element Coverage finding above.

Somewhat counter-intuitively, experts have lower similarity

scores for Execution Order than novices. This is due to the

linear nature of the programs that the novices read. Conditions

and loops were only introduced in later modules, therefore

the execution orders of the programs were mainly linear.

Comparing Story and Execution order with N-W illustrates

this effect, with an average similarity score of −1 for novice

programs and −71 for expert programs. Novices tend to read

linearly and the execution order of their programs is rather

linear, hence they get higher similarity scores for execution

order than experts.

RQ2 asks how experts differ from novices in linear reading.

For the measures representing the fraction of eye movements

where the participant moved their eyes with or against the lin-

ear reading order, we find that except for the Line Regression

Rate, experts exhibit significantly different reading behaviors
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than novices. The same applies to Element Coverage, Saccade

Length and the global alignment of the reading pattern to the

linear Story Order. This result matches our expectations that

the experts were better at reading code than the novices, but

the additional details illustrated by the linearity measures we

introduced in this study clarify much more precisely how these

differences were composed.

V. DISCUSSION

Programs are a particularly difficult form of text that

requires problem solving skills. Often the viewing of algo-

rithms appears closer to reading mathematical formulas or

interpreting graphs than to reading a “story” form of text.

Unlike natural language text, algorithms contain a wealth of

information condensed within non-redundant text.

The difficulty of reading natural language text depends on

the participant and the context. In many eye tracking studies,

the majority of significant effects are often the result of

participant variability. Studies from many domains such as

reading and problem-solving, have shown that eye movements

of experts differ from those of novices. For example, Kennedy

and Murray [14] gave evidence that poor readers and good

readers show different reading strategies for varying difficul-

ties of text and that fixation time was longer for difficult text.

The research questions we addressed in this paper were

• RQ1: Do the linear trends observed in natural language

reading hold for novices reading source code?

• RQ2: With respect to reading linearity, how do novices

reading source code differ from experts?

Our results show that novice participants follow the linear

Story Order on natural language texts with approximately 80%

of their eye movements and on source code with 70%. While

there are differences between reading natural language and

source code, there is still a fairly strong linear character to

novice source code reading. The non-linear portion might be

caused by novices moving their gaze around in search for

comprehension cues in the unfamiliar type of text. Expert

programmers showed 60% linear eye movements, they adapt

their natural language reading strategies when reading source

code. We believe that experts are applying their knowledge of

program execution to aid in comprehension.

The Execution Order model better explains the experts’

reading approach than Story Order does. This suggests that

experts tend to trace at least parts of the code. For novices on

the other hand, none of the two models is predominant.

VI. IMPLICATIONS

The results presented here have implications both for prac-

titioners and for programming educators.

A. Implications of findings for practitioners

The significance of this research for industry lies in the

findings on the code reading behavior of the experts and in

the development of measures which may provide the basis of

diagnostic tools to improve the daily practices of programmers.

We find evidence that experts have more advanced skills in

adapting their natural language reading strategies for computer

programs. We find that they take advantage of non-linear

reading orders and specific code reading strategies (e.g. code

tracing). We feel that this insight could lead to improved

models of program comprehension. In addition, tools that

incorporate the measures we have introduced in this paper

could provide the means to automatically recognize developer

reading patterns and use these to infer comprehension strate-

gies. Such tools could be deployed as diagnostic aids built into

the programming environment to detect patterns which may

indicate understanding, confusion or frustration. We envisage

that subtle recommendation cues can be integrated into the

modern IDEs to guide the attention of programmers and rec-

ommend certain actions without being excessively prescriptive

or critical.

Code reading is obviously related to the styles used in code

writing, both of which are dependent of the design of the

programming language and libraries used by developers. Our

algorithms and models could be used as diagnostics to evaluate

the effect of coding standards and practices on the readability

and understandability of source code [4].

B. Implications of findings for educators

Code reading skills are important for programmers and

contribute to their ability to solve problems. Thus, the de-

velopment of expert reading behavior should be an important

goal of computer science curricula.

Learning to program is challenging, causing many students

to experience difficulty carrying out basic programming tasks

even at the end of a first programming course. Lister et al.

[18] suggest that this is often a consequence not of poor

problem-solving skills, as is commonly thought, but of a

lack of knowledge and skills relating more to reading code

than writing it. These elements are precursors to problem-

solving. However there is little explicit focus on reading

skills in programming textbooks and academic and industrial

courses. Our findings show a differences in reading strategies

between novices and expert programmers that could help guide

curriculum design and teaching practice to explicitly support

the development of reading expertise.

Unlike natural language text, programs have a duality

consisting of the code and the dynamics of what happens

when the code runs. Expert programmers rarely make this

duality explicit because it is obvious to them, but it is not

necessarily obvious to the novice [28]. Linear reading suggests

the application of a mental model that does not include the

dynamic side of this duality. Teachers and novice program-

ming environments should therefore make explicit the ways in

which machine behavior differs from human thought, and that

program code is designed primarily to affect machine behavior.

An early focus on program dynamics will support development

of a valid mental model of what happens during program

execution, or of the notional machine, an idealized abstraction

that serves the purpose of understanding this. Teachers should

be prepared to make use of metaphors and visualizations that
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transfer program dynamics from the abstract to the concrete,

and to use tools and development environments that provide

program visualizations. Code reading and tracing skills should

be explicitly taught and practiced in addition to code writing.

Eye tracking integrated into an IDEs or visualization tools

can provide feedback to the student or the teacher. For

instance, informing that the initial Scan of the program was

not sufficient or that someone solving a bug finding task is

concentrating on a code entirely unrelated to the bug, would

be types of interventions that may promote early expert-like

behaviors.

Code reading is, of course, not exactly the same as code

tracing. While it can be useful in program comprehension to

emulate the execution of code, humans can, once expertise

has been gained, apply a range of strategies for assimilating

programs. In an object-oriented program, for example, we can

understand some things about the purpose of a class quite

quickly by looking at the overall structure before tracing in

detail what happens as particular methods execute. In contrast,

the computer can only find the entry point for execution and

proceed from there to execute code in class constructors and

methods as they are called. Experts are able to recognize

beacons that are typical indicators of the programs function-

ality [8], and patterns in code that typify, for example, the

implementation of specific algorithms or class relationships.

We usually do not teach comprehension of algorithms in

the same way we teach reading comprehension, but such an

approach should be built into CS curricula. Teachers should

make the importance of beacons and patterns explicit at

appropriate points in the development of program knowledge

and give practice in identifying examples. Further study of the

way in which experts make use of these may provide guidance

in this.

At the same time we need to be realistic about what degree

of expertise can be developed within a first programming

course. The reading behavior of our novices even at the

end of the course is not “expert” in nature. Expertise in

programming will only develop over an extended period of

study and sustained practice. However, our findings suggest

that embedding strategies for code reading in the curriculum

could provide a strong foundation for the development of

expertise.

It has recently been shown that one of the effective ways to

improve skill acquisition is to cue visual attention of novices to

the locations that experts attend while performing a task [31].

If such intervention should be adopted in teaching program

comprehension skills, knowledge about the expert behavior

and significant differences between expert and novice pro-

grammers is very helpful, so that interventions can concentrate

on these differences.

Instructors could use tools like these to investigate the

effectiveness of new pedagogies. Novice programmers could

monitor their own progress and judge whether they have

achieved personalized learning goals. Additional applications

are discussed in more detail in our prior work [6].

VII. CONCLUSIONS

Our results affect future research on the use of eye tracking

to understand how source code reading occurs in various

theoretical, behavioral, and practical ways. In applying a

range of measures to eye tracking data for novice and expert

programmers reading both natural language text and source

code, our study has been able to determine the degree of

linearity in both groups’ reading strategies. We devised two

distinct types of measures. Our local measures are based on

the relationship between pairs of consecutive fixations. Our

global measures are based on matching sequences of line

fixations to model sequences based on idealized story and

execution reading orders. Taken together, our measures give a

more comprehensive picture of linearity within programmers’

reading strategies.

REFERENCES

[1] V. R. Basili and H. D. Mills, “Understanding and doc-

umenting programs,” IEEE Transactions on Software
Engineering, vol. 18, pp. 270–283, 1982.

[2] R. Bednarik, “Expertise-dependent visual attention

strategies develop over time during debugging with

multiple code representations,” International Journal of
Human-Computer Studies, vol. 70, no. 2, pp. 143–155,

Feb. 2012.

[3] R. Brooks, “Towards a theory of the comprehension

of computer programs,” International Journal of Man-
Machine Studies, vol. 18, pp. 543–554, 1983.

[4] R. P. L. Buse and W. R. Weimer, “Learning a metric

for code readability,” IEEE Transactions on Software
Engineering, vol. 36, no. 4, pp. 546–558, Jul. 2010.

[5] T. Busjahn, C. Schulte, and A. Busjahn, “Analysis of

code reading to gain more insight in program com-

prehension,” Koli, Finland: ACM, 2011, pp. 1–9. DOI:

10.1145/2094131.2094133. [Online]. Available: http:

//doi.acm.org/10.1145/2094131.2094133.

[6] T. Busjahn, C. Schulte, B. Sharif, Simon, A. Begel,

M. Hansen, R. Bednarik, P. Orlov, P. Ihantola, G.

Shchekotova, and M. Antropova, “Eye tracking in com-

puting education,” in Proceedings of the Tenth Annual
Conference on International Computing Education Re-
search, Glasgow, Scotland, United Kingdom: ACM,

2014, pp. 3–10.

[7] F. Cristino, S. Mathôt, J. Theeuwes, and I. D. Gilchrist,

“ScanMatch: a novel method for comparing fixation

sequences,” Behavior Research Methods, vol. 42, no.

3, pp. 692–700, 2010.

[8] M. E. Crosby, J. Scholtz, and S. Wiedenbeck, “The roles

beacons play in comprehension for novice and expert

programmers,” in 14th Workshop of the Psychology of
Programming Interest Group, 2002, pp. 58–73.

[9] M. E. Crosby and J. Stelovsky, “How do we read

algorithms? a case study,” Computer, vol. 23, no. 1,

pp. 25–35, 1990.

264

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 16,2023 at 20:37:22 UTC from IEEE Xplore.  Restrictions apply. 



[10] Q. Fan, “The effects of beacons, comments, and tasks

on program comprehension process in software mainte-

nance,” PhD thesis, University of Maryland at Baltimore

County, Catonsville, MD, USA, 2010.

[11] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M.
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