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ABSTRACT
Mutation faults are the core of mutation testing and have been
widely used in many other software testing and debugging tasks.
Hence, constructing high-quality mutation faults is critical. There
are many traditional mutation techniques that construct syntactic
mutation faults based on a limited set of manually-defined muta-
tion operators. To improve them, the state-of-the-art deep-learning
(DL) based technique (i.e., DeepMutation) has been proposed to
construct mutation faults by learning from real faults via classic
sequence-to-sequence neural machine translation (NMT). However,
its performance is not satisfactory since it cannot ensure syntactic
correctness of constructed mutation faults and suffers from the ef-
fectiveness issue due to the huge search space and limited features
by simply treating each targeted method as a token stream.

In this work, we propose a novel DL-based mutation technique
(i.e., LEAM) to overcome the limitations of both traditional tech-
niques andDeepMutation. LEAMadapts the syntax-guided encoder-
decoder architecture by extending a set of grammar rules specific to
our mutation task, to guarantee syntactic correctness of constructed
mutation faults. Instead of predicting a sequence of tokens one by
one to form a whole mutated method, it predicts the statements
to be mutated under the context of the targeted method to reduce
search space, and then predicts grammar rules for mutation fault
construction based on both semantic and structural features in AST.
We conducted an extensive study to evaluate LEAM based on the
widely-used Defects4J benchmark. The results demonstrate that
the mutation faults constructed by LEAM can not only better rep-
resent real faults than two state-of-the-art traditional techniques
(i.e., Major and PIT) and DeepMutation, but also substantially boost
two important downstream applications of mutation faults, i.e., test
case prioritization and fault localization.
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1 INTRODUCTION
Mutation faults are originally proposed in mutation testing, which
aim to mimic real faults and then measure the effectiveness of a
test suite [35, 36, 62]. Specifically, by applying a series of mutation
operators (e.g., relational operator replacement) to the program
under test, a set of mutation faults can be constructed. Then, the
effectiveness of a test suite can be measured by executing the test
suite to detect the set of mutation faults. Undoubtedly, mutation
faults are the core of mutation testing. Indeed, as demonstrated
by the existing studies [48, 61], the quality of mutation faults can
significantly affect the effectiveness of mutation testing. Besides
measuring test effectiveness, mutation faults have been extensively
extended to facilitate many other software testing and debugging
tasks (also called downstream applications of mutation faults), e.g.,
test case prioritization (TCP) [55, 70] and fault localization (FL) [57,
63]. In fact, mutation-based techniques have become the state of
the art for various such downstream applications. Hence, due to
the important role and wide range of usage scenarios, constructing
high-quality mutation faults has become more and more critical.

Over the years, many techniques have been proposed to con-
struct mutation faults in order to represent real faults as much as
possible [21, 34, 40, 56, 58, 69, 76]. For ease of presentation, we call
a technique constructing mutation faults a mutation technique in
our paper. The traditional mutation techniques construct mutation
faults by manually designing a series of mutation operators, each
of which can conduct a simple syntactic change to the program
under mutation for creating a mutation fault [21, 34, 40, 56, 58, 69].
Despite simple, some of them have achieved good effectiveness
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and have been used in both practice and academia, e.g., Major [40]
and PIT [21]. However, as revealed by the existing studies [12, 28,
65, 76, 77], these mutation faults constructed by the current set of
mutation operators cannot sufficiently represent real faults. There
are two major reasons: (1) The current set of mutation operators
is limited. Designing more mutation operators may be helpful to
relieve this problem, but it requires substantial manual efforts. (2)
The current set of mutation operators focuses on simple syntactic
changes, indicating that it is hard to go deep into fault semantics.
Hence, they cannot construct the mutation faults specific to the
semantics of the program under mutation.

To relieve the limitations of traditional mutation techniques,
some existing work suggested to extract mutation operators from
historical bugs/fixes [12, 65]. Same as this idea, Tufano et al. [77]
proposed the state-of-the-art deep learning (DL) based mutation
technique (i.e., DeepMutation), which constructs mutation faults
by learning from a number of real faults via classic sequence-to-
sequence neural machine translation (NMT). Indeed, DeepMuta-
tion opens a direction to avoid the efforts of manually designing
mutation operators and incorporate program semantics via deep
learning, but it was just evaluated in terms of DL metrics and thus
it is unclear whether its constructed mutation faults can really
improve mutation testing and its downstream applications (e.g.,
mutation-based TCP). From our study (to be presented in Section 5),
we demonstrate for the first time that DeepMutation actually un-
derperforms the traditional techniques (i.e., Major and PIT) in the
usage scenarios of mutation faults. That is, despite novel, DeepMu-
tation does not reach the requirement of practicality like Major and
PIT. The main reasons are threefold: (1) It constructs a mutation
fault (i.e., a mutated method) by predicting a sequence of tokens
one by one in the method, which constitutes huge search space, and
thus it is hard to achieve accurate prediction to form an expected
mutated method. (2) It treats a method to be mutated as a token
stream, which actually loses much program information, and thus
the prediction performance can be negatively affected. (3) It cannot
ensure to produce syntactically correct programs after mutation.

To overcome the limitations of the state-of-the-art DL-based
technique, in this work, we propose a novel DL-based mutation
technique, called LEAM (LEArning to Mutate), by designing a
syntax-guided mutation process inspired by the existing neural
program generation techniques [73, 74, 89]. It aims to construct
better mutation faults for facilitating both mutation testing and the
downstream applications of mutation faults. To reduce the search
space when constructing a mutation fault (overcoming the first
limitation), LEAM builds a sub-model for predicting the statements
to be mutated under the context of the targeted method, rather than
directly predicting a sequence of tokens one by one to form a whole
mutated method. To improve the prediction performance (overcom-
ing the second limitation), LEAM transforms a targeted method
as an AST (rather than a token stream) for DL model building in
order to incorporate both structural and semantic information. To
guarantee the syntactic correctness of constructed mutation faults
(overcoming the third limitation), LEAM adapts the syntax-guided
encoder-decoder architecture and builds another sub-model for
predicting a grammar rule for each unexpanded non-terminal node
in the partial AST corresponding to the identified statements to be

mutated. By integrating these sub-models built based on AST in-
formation, LEAM constructs mutation faults for a targeted method.
In particular, since a method may introduce different faults, LEAM
incorporates the beam search algorithm [26, 43] for constructing a
set of mutation faults that are highly possible to occur in practice,
for a targeted method.

To evaluate the effectiveness of LEAM, we conducted an exten-
sive study based on the widely-used Defects4J benchmark [41] by
comparing with two typical traditional mutation techniques (i.e.,
Major [40] and PIT [21]) and the state-of-the-art DL-based muta-
tion technique (i.e., DeepMutation [77]). Specifically, we compared
the quality of mutation faults constructed by the four techniques in
three popular scenarios (i.e., mutation testing, and its two important
downstream applications – mutation-based TCP and FL). Our exper-
imental results show that LEAM can construct more representative
mutation faults than the three compared techniques in all the three
scenarios. For example, in mutation testing, the mutation faults con-
structed by LEAM can better represent real faults and the mutation
faults constructed by other mutation techniques. In mutation-based
TCP, feeding the mutation faults constructed by LEAM to the state-
of-the-art mutation-based TCP techniques (i.e., GRK, GRD, and
HYB-ω [70]) achieves 15.38%∼280.00% improvements in terms of
average TCP effectiveness than the three compared techniques.
In mutation-based FL, feeding the mutation faults constructed by
LEAM to the state-of-the-art mutation-based FL techniques (i.e.,
MUSE [57] and Metallaxis [63]) achieves 110.71%∼600.00% improve-
ments in terms of average Top-1 FL effectiveness than the three
compared techniques.

To sum up, our work makes the following main contributions:

• We propose a novel DL-based mutation technique (LEAM),
which adapts the syntax-guided encoder-decoder architec-
ture to build two sub-models based on AST information, for
better learning to represent real faults and ensuring syntactic
correctness of mutation faults.

• We conduct an extensive study to evaluate LEAM in three
popular scenarios, including mutation testing and its two
downstream applications (mutation-based TCP and FL). The
results demonstrate the significant superiority of LEAM over
two traditional techniques and the state-of-the-art DL-based
technique in all the three scenarios.

• We develop and release our tool and the built model for
promoting future research and practical use. Please find them
at: https://github.com/tianzhaotju/LEAM.

2 BACKGROUND
For ease of understanding, in this section we first introduce some
basic concepts on mutation testing and mutation faults in Sec-
tion 2.1. Then, we introduce two important downstream applica-
tions of mutation faults, i.e., mutation-based TCP (Section 2.2) and
mutation-based FL (Section 2.3). This is because besides the original
usage scenario (i.e., mutation testing), mutation faults have been
widely used in many other testing and debugging tasks. To more
sufficiently evaluate the effectiveness of LEAM, we also investigate
the quality of constructed mutation faults in these downstream
applications by taking the two as the representative (Section 4).

https://github.com/tianzhaotju/LEAM
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2.1 Mutation Testing and Mutation Faults
Mutation testing aims to reveal a set of deliberately introduced
faults with regard to a program under test, in order to measure the
effectiveness of a test suite (and further augment the test suite) [36].
Its basic assumption is that the introduced faults can effectively
represent real faults [5, 6, 22]. Here, a program with an introduced
fault is called a mutation fault (or mutant), which is constructed
by deliberately changing a small portion of code in the program
under test. The changing rules are called mutation operators.
For example, given that “if(x>y)” is a code fragment in the orig-
inal program under test, a mutation fault can be constructed by
changing it into “if(x<y)” through the mutation operator of re-
lational operator replacement. Please note that different mutation
techniques may include different sets of mutation operators.

Based on a set of constructed mutation faults, the effectiveness
of a test suite can be measured by running each test case on each
mutation fault. If the original program and a mutation fault produce
different outputs after the execution of a test case, we say that the
mutation fault is killed by the test case. If a mutation fault cannot
be killed by the whole test suite, we say that the mutation fault is
live with regard to the test suite. In particular, there are mutation
faults equivalent to the original program, and thus they cannot be
killed by any test cases (not only the test cases in the test suite).
These mutation faults are called equivalent mutation faults. By
computing themutation score, which is the ratio of the number
of killed mutation faults by the test suite to the total number of
constructed mutation faults (except equivalent mutation faults), the
effectiveness of the test suite can be measured.

Mutation testing is one of the most effective ways of measuring
test effectiveness [9, 20, 86], and its core lies in mutation faults [36,
65, 77]. Therefore, constructing high-quality mutation faults for
better representing real faults is a critical task.

2.2 Mutation-based TCP
Test case prioritization (TCP) aims to schedule the execution order
of test cases for detecting faults earlier, which has been widely
studied in the literature [13, 14, 18, 31, 68, 80]. Over the years, a large
number of TCP techniques have been proposed, such as coverage-
based TCP [16, 29, 31, 64, 88] and mutation-based TCP [25, 55, 70].
As demonstrated by the existing studies [55, 70], mutation-based
TCP techniques achieve better prioritization effectiveness than the
most widely-studied coverage-based TCP techniques, and thus have
become one of themainstreamTCP techniques. In our study, wewill
compare different mutation techniques by feeding their constructed
mutation faults to a mutation-based TCP technique respectively,
and then analyze the corresponding achieved TCP effectiveness.
Next, we briefly introduce three state-of-the-art mutation-based
TCP techniques, which are also the ones used in our study.

GRK iteratively selects a test case that maximizes the number
of additionally killed mutation faults [70]. It aims to distinguish
the mutation faults from the original program as early as possible.
GRD iteratively selects a test case that maximizes the number of ad-
ditionally distinguished mutation faults [70]. Here, mutation faults
are distinguished by a test case when their outputs are different
after the execution of the test case. That is, GRD aims to distinguish
all the mutation faults from each other as early as possible.HYB-ω

combines both GRK and GRD, which iteratively selects a test case
that maximizes the weighted sum of the number of additionally
killed mutation faults and the number of additionally distinguished
mutation faults. When the weight of the former (denoted as ω ∈

[0, 1]) is 1, HYB-ω is equivalent to GRK; when ω = 0, HYB-ω is
equivalent to GRD. In our study, we setω = 0.5 in HYB-ω following
the existing work [70].

2.3 Mutation-based FL
Fault localization (FL) aims to automatically localize faulty program
elements (e.g., statements or methods) by ranking all the program el-
ements based on their suspicious scores, which tend to be computed
based on various dynamic execution information. FL have received
extensive attention over the years [3, 15, 17, 39, 45, 57, 67, 81],
and largely promoted the development of its follow-up task (i.e.,
automated program repair) [7, 27, 59, 83, 89]. In the literature,
a large number of FL techniques have been proposed, such as
spectrum-based FL [3, 39, 45] and mutation-based FL [57, 63]. In-
deed, mutation-based FL techniques are one kind of themost widely-
studied FL techniques, and their effectiveness has been demon-
strated by the existing studies [32, 57, 63, 66]. In our study, we will
also compare different mutation techniques by investigating the
effectiveness of a mutation-based FL technique by feeding the con-
structed mutation faults by these mutation techniques to it respec-
tively. Here, we brief introduce two state-of-the-art mutation-based
FL techniques, which are also the ones used in our study.

MUSE [57] andMetallaxis [63] are two state-of-the-artmutation-
based FL techniques. In general, mutation-based FL techniques
consider whether the execution of a statement affects the result
of a test case by injecting mutation faults. If a statement affects
failing test cases more frequently but affects passing test cases more
rarely, it is more suspicious. The main difference between MUSE
and Metallaxis lies in how to utilize mutation faults to compute
the suspicious score of each statement. MUSE first computes the
suspicious score of each mutation fault as shown in Formula 1

S(m) = failed(m) −
f2p
p2f

· passed(m) (1)

where failed(m)/passed(m) is the number of test cases that fail/pass
on the original program but pass/fail on the mutation fault m,
f2p/p2f is the number of test cases that change from “fail”/“pass”
to “pass”/“fail” on any mutation fault. Then, the suspicious score of
a statement (denoted as s) is the average of the suspicious scores of
all the mutation faults occurring at s .

Metallaxis computes the suspicious score of each mutation fault
as shown in Formula 2.

S(m) =
failed(m)√

totalfailed · (failed(m) + passed(m))
(2)

where totalfailed is total number of test cases that fail on the origi-
nal program, failed(m) is the number of test cases that fail on the
original program but the output changes on the mutation faultm,
and similarly for passed(m). Then, the suspicious score of a state-
ment (denoted as s) is the maximum of the suspicious scores of all
the mutation faults occurring at s .

Following the existing studies [8, 50–52], we used the two tech-
niques for localizing potential faulty methods (i.e., method-level
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FL) in our study. Therefore, for MUSE and Metallaxis, we further
computed the suspicious score of each method by using the maxi-
mum of the suspicious scores of all the statements in the method
following the existing work [51, 52, 72].

3 APPROACH
We propose a novel DL-based mutation technique by learning from
a large number of real faults, called LEAM, which can effectively
overcome the limitations of traditional mutation techniques (i.e.,
requiring substantial manual efforts to design mutation operators
for representing real faults but still failing to construct the faults
specific to the semantics of the program under mutation). Similar
to the state-of-the-art DL-based mutation technique (i.e., DeepMu-
tation) [77], LEAM conducts mutation at the method granularity,
i.e., constructing mutated methods for a targeted method in the
program. However, different from it, LEAM has the following sig-
nificant advantages to construct better mutation faults:

• Guaranteed syntactic correctness. LEAM adapts the syntax-
guided encoder-decoder architecture for mutation fault con-
struction by extending a set of grammar rules specific to
our task. In this way, a mutation fault can be constructed by
applying a sequence of predicted grammar rules to change
the targeted method, and thus it is syntactically correct.

• More comprehensive program features. Instead of treating a
method to be mutated as a token stream, LEAM extracts
both semantic and structural features from the method to be
mutated by representing it as an AST. Such comprehensive
features are helpful to build a more accurate model.

• Reduced search space. Instead of predicting a sequence of
tokens one by one to form a whole mutated method, LEAM
first predicts the statements highly possible to be mutated
under the context of the targeted method, which is enabled
by adding the corresponding grammar rules and can largely
reduce mutation space, and then predicts a sequence of gram-
mar rules for changing the statements.

As a method may introduce different faults, LEAM incorporates
the beam search algorithm [26, 71] for constructing a set ofmutation
faults highly possible to occur in practice for the targeted method.
Figure 1 shows the overall architecture of LEAM. In the following,
we will introduce the set of our extended grammar rules in LEAM in
Section 3.1, our extracted features for model building in Section 3.2,
our DL model for grammar rule prediction (including statement
prediction and change prediction) in Section 3.3, and the beam-
search-based mutation fault construction process in Section 3.4.

3.1 Grammar Rule Definition
Inspired by neural program generation [73, 74, 89], LEAM adapts
the syntax-guided encoder-decoder architecture for our task of
mutation fault construction in order to guarantee syntactic cor-
rectness of each constructed mutation fault. Specifically, it aims
to predict the probability of each grammar rule for expanding an
unexpanded non-terminal node in a partial AST. Please note that
the mutation process is conducted at the AST level in LEAM since
(1) this level can well support the syntax-guided architecture and
(2) an AST can provide more comprehensive information for model

Table 1: Definition of extended grammar rules for our task

1. Start −→IdentifiedStmts
2. IdentifiedStmts−→IdentifiedStmt; IdentifiedStmts | end
3. IdentifiedStmt −→Insert | Modify | Delete
4. Insert −→insert(⟨NTSstmt⟩)
5. Modify −→modify(⟨ID⟩, ⟨NTS⟩)
6. Delete −→delete(⟨IDstmt⟩)
7. ⟨NTS⟩ −→ ⟨GRS⟩
8. ⟨Identifier⟩ −→identifier | placeholder
* ⟨NTS⟩ stands for a non-terminal symbol.
* ⟨NTSstmt⟩ belongs to ⟨NTS⟩, but refers in particular to the non-terminal in the

grammar of the targeted programming language representing a statement.
* ⟨ID⟩ refers to the ID of an AST node representing a NTS.
* ⟨IDstmt⟩ belongs to ⟨ID⟩, but refers in particular to the ID of the root node for

the identified statement.
* ⟨GRS⟩ refers to the grammar rules defined in the targeted programming language.
* ⟨Identifier⟩ is the non-terminal in the grammar of the targeted programming

language representing an identifier.

building (to be presented in Section 3.2). Through applying a se-
quence of predicted grammar rules to expand from the start symbol,
a syntactically correct mutation fault can be constructed.

Here, the set of grammar rules to be predicted in LEAM contains
two subsets: (1) all the grammar rules defined in the targeted pro-
gramming language of the program under mutation, which is the
key to guarantee syntactic correctness of each constructed muta-
tion fault; (2) our extended grammar rules to enable the architecture
to support our task of mutation fault construction. Since the former
subset of grammar rules is defined by the targeted programming
language, we just present the definition of our extended grammar
rules for our task in Table 1. Please note that LEAM is a general tech-
nique and can be applied to any programming language with the
concept similar to statement, and thus we define these grammar
rules in a general manner.

Instead of predicting a sequence of tokens one by one to form
a whole mutated method, LEAM reduces the search space by first
predicting the statements highly possible to be mutated under the
context of the targeted method. Then, the mutation process can be
just conducted on the identified statements rather than the whole
method. Specifically, LEAM defines Rules 1-2 to support the predic-
tion of the statements to be mutated. From the two rules, LEAM
supports both single-statement mutation and multiple-statements
mutation, which could represent real faults better than traditional
mutation techniques (e.g., Major [40] and PIT [21]) that only con-
duct one syntactic change on one statement in each mutation.

Rules 3-6 define three operations on each identified statement.
The insert operation aims to insert a newly generated statement
before the identified statement. The parameter <NTS> can be ex-
panded to the whole statement to be inserted via a sequence of
grammar rules (defined in the targeted programming language as
shown in Rule 7). The modify operation aims to replace an AST
subtree in the identified statement with a new AST subtree. It has
two parameters: (1) the ID of the root node for the AST subtree to
be replaced, where the ID is defined as the order of a node in the
preorder traversal sequence for the AST; (2) the non-terminal to be
expanded to the new AST subtree via a sequence of grammar rules,
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which should be the same as the root node in the first parameter
so as to guarantee syntactic correctness after replacement. The
delete operation aims to delete the identified statement.

To enable the construction of program-specific mutation faults
(i.e., generating program-specific identifiers duringmutation), LEAM
introduces placeholder to the grammar of the targeted program-
ming language and changes identifier nodes into non-terminals,
as defined in Rule 8. Specifically, LEAM replaces infrequent iden-
tifiers in the training data as placeholder following the existing
work [89], and thus enables an identifier node to be expanded to
either a placeholder or a frequent identifier in training data. Fol-
lowing the existing work [89], when the number of occurring times
for an identifier is more than 100 in training data, we regard it
as a frequent identifier. When constructing a mutation fault, each
placeholder can be replaced with any program-specific identifier
that can be accessible from the local context and does not incur type
errors. Here, LEAM randomly selects one from the program-specific
identifiers satisfying the constraints.

3.2 Feature Extraction
LEAM constructs mutation faults by building a DL model for pre-
dicting grammar rules. Actually, our DL model contains two sub-
models for two-step prediction, i.e., (1) predicting the statements
to be mutated in the targeted method based on Rules 1-2 (called
statement prediction), and (2) predicting the changes on the identi-
fied statements based on Rules 3-8 and the grammar rules defined
in the targeted programming languages (called change prediction).
Here, we introduce our extracted features for the two sub-models
in LEAM. As presented before, LEAM conducts mutation at the
method granularity, and indeed each training instance in our train-
ing data is a pair of correct method and faulty method (more details
about our training data can be found in Section 4.1). Therefore,
LEAM extracts features in the scope of the targeted method. Specif-
ically, LEAM extracts both semantic and structural features by rep-
resenting the method as an AST rather than a token stream. Since
change prediction is based on statement prediction, more features
can be extracted for change prediction after statement prediction.

LEAM extracts two kinds of features for statement prediction at
the AST level: (1) AST semantic features: LEAM first conducts the
preorder traversal of the AST to produce a sequence of nodes, and
then extracts the semantics of each node as a vector, denoted as
(c1, c2, . . . , cL), where ci is embedded via word embedding and L is
the node sequence length. (2) AST structural features: Following the
existing work [73, 74, 89], LEAM transforms an AST into a directed
graph to capture the structural relations between AST nodes, where
the nodes refer to AST nodes and the directed edges are from a node
to its children and left sibling. Then, the structural information is
represented as an adjacent matrix denoted as GL×L . These features
are further processed by self-attention (ϕself) and tree convolution
(ϕconv) layers as shown in Formula 3.

e1, e2, . . . , eL = ϕself([c1, c2, . . . , cL])

a1,a2, . . . ,aL = ϕconv([e1, e2, . . . , eL] × G
L×L)

(3)

Besides the two kinds of features, LEAM additionally extracts
three kinds of features for change prediction. Since LEAM is based
on the syntax-guided encoder-decoder architecture, the partial se-
quence of grammar rules that have been predicted also affects the
prediction of the next grammar rule. Therefore, LEAM also ex-
tracts features from the partial sequence. Following the existing
work [74, 89], LEAM considers three kinds of heterogeneous infor-
mation in a partial sequence: (1) Grammar rule sequence: LEAM
first considers the position of each grammar rule in the partial
sequence by representing the partial sequence as a vector based
on the ID of each grammar rule. We take it as the input of the
above self-attention layer and denote the output as (r1, r2, . . . , rP ),
where P is the length of the partial sequence. (2) Grammar rule
semantics: LEAM considers the semantics of each grammar rule by
its definition. It represents the definition of each grammar rule as
a vector by character embedding of each symbol in the definition
with a fully-connected layer, which is represented as (v1, v2, . . . ,
vP ). (3) Grammar rule path: a partial sequence of grammar rules
can construct a partial AST, and thus LEAM further considers the
rule path from the root node to the current node to be expanded,
which can indicate the depth of each grammar rule in the partial
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AST. It represents the rule path as a vector based on the ID of each
node, denoted as (q1, q2, . . . , qP ). These features can be further pro-
cessed by gating (ϕgating) and grammar-attention (ϕgrammar) layers
as shown in Formula 4.

u1,u2, . . . ,uP = ϕgating([r1, r2, . . . , rP ;v1,v2, . . . ,vP ])
д1,д2, . . . ,дP = ϕgrammar([u1,u2, . . . ,uP ;q1,q2, . . . ,qP ])

(4)

Then, the final feature vector (d1,d2, . . . ,dT ) can be computed by
the fully-connected layer (ϕdense ) as shown in Formula 5.

d1,d2, . . . ,dT = ϕdense ([a1,a2, . . . ,aL ;д1,д2, . . . ,дP ]) (5)

3.3 Grammar Rule Prediction
Our DL model is based on the state-of-the-art syntax-guided code
generationmodel, i.e., TreeGen [74]. It is a tree-based Transformer [78]
and thus it can solve the significant challenge of long dependencies
between code elements [78]. Due to its effectiveness, it has been
widely-used in many code-related tasks [24, 74, 84, 89].

In our task, LEAM designs two sub-models in the TreeGen
architecture for our two-step prediction (i.e., statement predic-
tion and change prediction). Specifically, the final feature vector
(d1,d2, . . . ,dT ) is fed into the two sub-models for statement predic-
tion and change prediction. Both of them are pointer networks [79],
which are trained by maximizing the negative log-likelihood of the
ground-truth sequence of grammar rules for each pair of correct
and faulty methods in training data. In particular, they do not work
at the same time by designing a control module to determine which
sub-model is enabled. It first enables the sub-model for statement
prediction, in order to identify the statements to be mutated. Then,
it enables the sub-model for change prediction and disables the
other sub-model, in order to change the identified statements by
predicting a sequence of grammar rules. The calculation via the
pointer network can be shown as Formulae 6 and 7.

γ1,γ2, . . . ,γT = ϕpointer ([d1,d2, . . . ,dT ]) (6)

pi =
exp(γi )∑T
j=1 exp(γj )

(7)

where (ϕpointer) represents the pointer network. The output of the
pointer network (γ1, γ2, . . . , γT ) is then normalized by softmax to
obtain normalized vector (p1, p2, . . . , pT ). Specifically, the output
of the sub-model for statement prediction is the probability of
each statement to be mutated under the context of the targeted
method. The output of the sub-model for change prediction is the
probability of each grammar rule (except Rules 1-2) to be applied to
expand the current non-terminal. For the rules whose left side is
not the current non-terminal, LEAM sets the outputs of the fully-
connected layer to −∞ and then their probabilities can be 0 after
softmax normalization.

Please note that, the current LEAM implementation supports the
mutation on one or two statements due to the following two reasons:
(1) it can effectively reduce the search space; (2) a large percentage
of real faults involve at most two statements. We analyzed the
number of statements involved in each real fault of our collected
data (i.e., 297,029 real faults of Java projects, to be presented in
Section 4.1), and found that the real faults involving one and two
statements occupy 87.35%. In the future, we can further extend
LEAM to support the mutation on more statements.

3.4 Mutation Fault Construction
With our DL model, LEAM constructs a mutation fault by applying
a sequence of grammar rules (predicted by change prediction) to
the statements (predicted by statement prediction). If LEAM only
preserves the most probable sequence of grammar rules on the most
probable statements, only one mutation fault can be constructed
for the targeted method. However, in practice, a method may intro-
duce different faults, and thus it is important to construct a set of
mutation faults for a targeted method. To balance the accuracy and
efficiency of mutation fault construction, LEAM incorporates the
beam search algorithm [26, 71] to obtain a set of highly possible
sequences of grammar rules. Please note that each sequence of
grammar rules in the searched set includes the grammar rules for
change prediction and the grammar rules for statement prediction,
since such a pair can help construct a mutation fault. Specifically, it
preserves Top-K (K refers to beam size) partial sequences of gram-
mar rules in each prediction. For each of the K partial sequences, it
then produces Top-K grammar rules as the potential next grammar
rules in the final set of grammar rule sequences, and thus obtains
K2 partial sequences of grammar rules. It further preserves Top-K
partial sequences according to the probabilities of the K2 partial
sequences for next prediction. Following the existing work [43, 44],
the probability of a partial sequence of grammar rules is calculated
by the product of the probability of each grammar rule in the partial
sequence at the corresponding prediction.

When all the non-terminals have been expanded, the prediction
process stops and a final set of Top-K sequences of predicted gram-
mar rules are obtained for mutation fault construction. Also, to
guarantee the search efficiency, we also terminate the prediction of
a sequence of grammar rules when its length reached a pre-defined
threshold ζ . That is, we will discard such sequences of grammar
rules for mutation fault construction.

4 EVALUATION DESIGN
In this section, we conducted an extensive study to sufficiently
evaluate the quality of mutation faults constructed by our proposed
mutation technique, i.e., LEAM. Specifically, we evaluated LEAM in
the three usage scenarios for mutation faults, including its original
scenario (i.e., mutation testing) – RQ1, a widely-studied software
testing task (i.e., mutation-based TCP) – RQ2, and a widely-studied
software debugging task (i.e., mutation-based FL) – RQ3. Both TCP
and FL are important downstream applications of mutation faults.

4.1 Training Data and Subjects Under Test
We constructed the training data required by LEAM based on the
open-source dataset provided by the existing work [89]. It contains
the Java projects created between March 2011 and March 2018
on GitHub [1], and collected fault-fixing commits by checking
whether the commit messages contain at least one of the following
words: bug, issue, problem, error, fix, and solve. Same as the existing
work [77], we obtained a real fault by treating a fault-fixing commit
as the clean version and its prior commit as the faulty version by
introducing a fault to the clean version. As presented in Section 3.3,
LEAM currently supports the mutation on one or two statements,
and thus we further removed the faults involving more than two
statements. To avoid data leakage, we removed all the commits
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related to the projects in Defects4J V1.0 (that is our subjects to be
introduced later). Finally, we obtained 297,029 real faults, and used
80% of them as the training set and 20% as the validation set.

To evaluate LEAM, we adopted Defects4J [41], one of the most
widely-used benchmarks in the area of software testing and de-
bugging [10, 11, 37, 51, 53, 76, 89], as subjects in our study. Specifi-
cally, we used all the five subjects (i.e., Commons Lang, Joda-Time,
CommonsMath, JFreeChart, andClosure Compiler) with 357 real
faults in Defects4J V1.0. Since mutation testing is very costly and
our study needs to run four mutation techniques, we did not use
more subjects in the latest Defects4J version in order to balance
the study sufficiency and costs. Indeed, Defects4J V1.0 has been the
most widely used Defects4J version for existing studies on mutation
testing and its downstream applications [10, 19, 37, 38, 42, 52, 53].

4.2 Compared Mutation Techniques
In our study, we compared LEAM with two most widely-used tradi-
tional mutation techniques, i.e., Major [40] and PIT [21], and the
state-of-the-art DL-based mutation technique, i.e., DeepMutation
(DM) [76]. All of them are open-source tools. Major and PIT con-
duct syntactic mutation on source code and bytecode respectively,
based on their corresponding pre-defined mutation operators. In
our study, we used all the mutation operators in them for construct-
ing mutation faults, respectively. The details on DeepMutation have
been introduced in Section 1. Regarding it, we used the configura-
tions recommended by its original paper [77]. Both DeepMutation
and LEAM conduct source-code-level mutation like Major. Please
note that same as the existing work [60], DeepMutation cannot be
applied to Closure due to its internal errors, and thus we cannot
obtain the results of DeepMutation on Closure. As we compared
these techniques in terms of overall results across all the subjects in
our paper, our overall results did not include the results on Closure
in order to fairly compare with DeepMutation. The results on Clo-
sure can be found at our project homepage [2] and the conclusions
on Closure are consistent with the overall conclusions in the paper.

4.3 Implementations
We implemented LEAM in Python 3.7.0 based on PyTorch 1.3.0. We
determined the settings of the hyper-parameters in LEAM based
on the performance on our validation set. Specifically, we set the
embedding size to 256, the size of hidden layers to 256, the optimizer
to Adam, the learning rate to 0.0001, and the number of epochs to
20. We set the beam size to 64, and ζ to 60. To promote the practical
use and future research, we have released both the implementa-
tion of LEAM and our built model at our project homepage [2].
With our implementation, researchers/practitioners can replicate
our experiments, improve the performance of LEAM in future re-
search, and extend LEAM to other programming languages. With
our built model, users can save the training time and directly use it
to construct mutation faults for any given Java projects.

We conducted all the experiments on a server with Intel(R)
Xeon(R) Silver 4214 @ 2.20GHz CPU, 256GB memory, NVIDIA
GeForce RTX 2080 Ti, and Ubuntu 18.04 as the operating system.

5 RESULTS AND ANALYSIS
5.1 RQ1: Effectiveness Comparison in

Mutation Testing
5.1.1 Metrics. We first compared the quality of mutation faults
constructed by the fourmutation techniques in the original scenario,
i.e., mutation testing. We adopted a set of widely-used metrics in
mutation testing to measure the quality of mutation faults in this
scenario [4, 42, 60, 85]. The first metric measures how the mutation
faults can represent real faults in terms of adequate test suites [60,
85]; as a supplement to the first metric, the second metric further
measures how the mutation faults can represent the mutation faults
constructed by other mutation techniques [49]. Furthermore, the
last metric measures how mutation faults can represent real faults
in terms of non-adequate test suites [42].

Regarding the first metric, following the existing work [4, 42, 85],
for each mutation technique, we constructed the minimal test suite
that is selected from the original test suite but kills the maximum
number of mutation faults constructed by this technique, and then
measured the percentage of real faults killed by the constructed
test suite. Regarding the second metric, following the existing
work [4, 42], for each mutation technique, we further measured the
mutation score of the above-constructed test suite on the mutation
faults constructed by each of the other mutation techniques, respec-
tively. Regarding the last metric, similar to the existing work [41],
for each mutation technique, we constructed m test suites, each
of which contains n test cases selected from the original test suite
randomly without replacement, and then measured the mutation
score and the result of real fault detection for each test suite. Finally,
we measured the point-biserial correlation (that measures the corre-
lation between dichotomous variable and continuous variable) [75]
between mutation score and real fault detection. Please note that
we removed the mutation faults that cannot be killed by the original
test suite for the above metrics following the existing work [33].

5.1.2 Process. Following the existing work [42], we constructed
mutation faults by each studied mutation technique on each fixed
version in each subject, and regarded the corresponding faulty
version as the real fault introduced to the fixed version. Specifically,
we considered only the changed source files between the fixed
version and the faulty version for constructing mutation faults.
Then, we measured the quality of the mutation faults constructed
by each mutation technique in terms of the three metrics. Please
note that for eachmetric, we repeated the process 10 times to reduce
the influence of randomness. For the last metric, we set m = 50
and n = 50 similar to the existing study [87]. If the number of test
cases in the original test suite cannot support the construction of
50 test suites, we constructed the maximum number of test suites
with the size of 50. If it cannot support the construction of 10 test
suites with the size of 50, we discarded this version since it does
not have statistical significance for the correlation.

Besides, different mutation techniques tend to construct different
numbers of mutation faults, which could affect the effectiveness of
each mutation technique in terms of these metrics. Although the
number of constructed mutation faults is the inherent characteristic
of each mutation technique, we still tried to compare them by con-
trolling for the number of mutation faults. On average, the number



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang

of mutation faults constructed by DeepMutation for each changed
source file (i.e., 11) is the smallest among the four techniques since
(1) it cannot ensure the syntactic correctness of each constructed
mutation fault; and (2) it is just applicable to the methods where
the number of tokens is smaller than 50 in order to improve the
learning process. The number of mutation faults constructed by
PIT (i.e., 2,719) is the largest since it conducts mutation on bytecode
rather than source code. The average number of mutation faults
constructed by Major and LEAM is 597 and 347, respectively.

Overall, we first compared the four techniques in terms of the
three metrics when using all the constructed mutation faults. Then,
we compared the four techniques by randomly sampling the same
number of mutation faults for each mutation technique as the small-
est number of constructed mutation faults among the four tech-
niques on each version of each subject. Finally, since the num-
ber of constructed mutation faults by DeepMutation is largely
smaller than those by the other three techniques due to the above-
mentioned reasons, keeping the number of mutation faults same
as that of DeepMutation may incur bias. We further repeated the
experiment by leaving DeepMutation out and randomly sampling
the same number of mutation faults as the smallest number of con-
structed mutation faults among the three techniques (i.e., Major,
PIT, and LEAM) for each version of each subject. To reduce the
influence of randomness caused by mutation fault sampling, we
repeated the experiments 10 times.

5.1.3 Results. Figure 2 shows the quality of the mutation faults
constructed by each mutation technique in terms of the first met-
ric. Each figure shows the percentage of real faults killed by the
constructed test suite based on the mutation faults for each mu-
tation technique. We put the results on all the versions of all the
subjects together to draw each box. From Figure 2, LEAM detects
the largest percentage of real faults by the constructed test suite
based on its constructed mutation faults among all the studied tech-
niques, regardless of using all the constructed mutation faults or
controlling for the number of mutation faults. For example, when
controlling for the number of mutation faults same as the smallest
one among Major, PIT, and LEAM, the medium percentage of real
faults detected by LEAM across all the versions is 75.35%, while
that by Major and PIT are 55.46% and 35.29%, respectively. The re-
sults demonstrate that LEAM is more helpful to construct mutation
faults representing real faults in terms of adequate test suites.

Similarly, Figure 3 shows the quality of the mutation faults con-
structed by each mutation technique in terms of the second metric.
We take the first group of boxes in Figure 3(a) as the representative
to explain how to read this kind of figures. Each box in this group
shows the mutation score of the test suite constructed based on the
mutation faults constructed by Major, in killing the mutation faults
constructed by PIT, DeepMutation, and LEAM, respectively. For
ease of presentation, we call them the mutation scores of Major over
PIT, Major over DeepMutation, and Major over LEAM, respectively.
From Figure 3(a), the median mutation score of Major over LEAM,
PIT over LEAM, and DeepMutation over LEAM are 0.90, 0.91, and
0.38 respectively, while that of LEAM over Major, LEAM over PIT,
and LEAM over DeepMutation are 0.99, 0.98, and 0.99 respectively.
The results demonstrate that the mutation faults constructed by
LEAM can better represent the mutation faults constructed by other

Table 2: Correlation of mutation score and real fault detec-
tion

Tech. Mutation Faults Number
All Control w/ DM Control w/o DM

Major 0.60 0.30 0.49
PIT 0.56 0.28 0.49
DM 0.28 0.14 -

LEAM 0.64 0.40 0.55

techniques when using all the constructed mutation faults. The
same conclusion can be obtained when controlling for the number
of constructed mutation faults from Figures 3(b) and 3(c).

Table 2 shows the medium correlation coefficients between mu-
tation score and real fault detection (i.e., the third metric) across all
the versions of all the subjects. The second column shows the result
when using all the constructed mutation faults, while the last two
columns show the results under the two scenarios of controlling
for the number of mutation faults. From Table 2, the correlation
coefficient of LEAM is larger than that of the other three techniques
regardless of using all the mutation faults or controlling for the
number of mutation faults. Moreover, all the p-values for these
correlations are smaller than 0.05, indicating that the correlations
have statistical significance. Hence, the results demonstrate that
there is stronger correlation between mutation score on mutation
faults constructed by LEAM and real fault detection, compared with
the other three techniques.

5.2 RQ2: Effectiveness Comparison in
Mutation-based Test Case Prioritization

5.2.1 Metrics. In the scenario of mutation-based TCP, we mea-
sured the effectiveness of each studied mutation-based TCP tech-
nique by feeding the mutation faults constructed by a mutation
technique, as the metric for the quality of the mutation faults
constructed by this mutation technique. Following the existing
TCP work [25, 55, 70], we adopted the most widely-used met-
ric, i.e., APFD (Average Percentage of Faults Detected) [68], to
measure the effectiveness of a mutation-based TCP technique:
APFD = 1 − TF1+TF2+...+TFr

nr + 1
2n , where r refers to the number

of faults to be detected by the test suite to be prioritized, n is the
number of test cases in the test suite, TFi is the ranking of the
first test case in the test suite prioritized by a mutation-based TCP
technique that detects the ith fault.

For a mutation-based TCP technique, if using the mutation faults
constructed by amutation technique achieves the larger APFD value
than that by another mutation technique, it means that the former
mutation technique outperforms the latter.

5.2.2 Process. Following the existing study [70], for each pair of
versions in each subject, we mimicked the regression testing sce-
nario by treating the fixed version as the prior version and the faulty
version as the current version under test. Then, we constructed mu-
tation faults on the previous version via each mutation technique.
Here, we considered only the changed source files between the two
versions for constructing mutation faults following the existing
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Figure 2: Ability of representing real faults
in terms of adequate test suites. (a) shows
the result when using all the constructed
mutation faults; (b)/(c) shows the result un-
der controlling for the number of mutation
faults when considering/ignoring DeepMu-
tation (DM).

0.00

0.25

0.50

0.75

1.00

Major PIT DM LEAM Major PIT DM LEAM Major PIT LEAM

M
ut

at
io

n 
S

co
re

Major
PIT
DM
LEAM

(a)

0.00

0.25

0.50

0.75

1.00

Major PIT DM LEAM Major PIT DM LEAM Major PIT LEAM

M
ut

at
io

n 
S

co
re

Major
PIT
DM
LEAM

(b)

0.00

0.25

0.50

0.75

1.00

Major PIT DM LEAM Major PIT DM LEAM Major PIT LEAM

M
ut

at
io

n 
S

co
re

Major
PIT
DM
LEAM

(c)

0.00

0.25

0.50

0.75

1.00

Major PIT DM LEAM Major PIT DM LEAM Major PIT LEAM

M
ut

at
io

n 
S

co
re

Major
PIT
DM
LEAM

Figure 3: Ability of representingmutation faults constructed by othermutation
techniques. (a) shows the result when using all the constructed mutation faults;
(b)/(c) shows the result under controlling for the number of mutation faults
when considering/ignoring DeepMutation (DM).

Table 3: Overall effectiveness in mutation-based TCP

TCP Major PIT DM LEAM

GRK 0.62 0.65 0.20 0.75
GRD 0.62 0.65 0.20 0.76
HYB-ω 0.61 0.65 0.20 0.75

study [70]. Based on the mutation faults constructed by a mutation
technique, we prioritized test cases in the test suite provided by the
previous version via each studied mutation-based TCP technique
(i.e., GRK, GRD, and HYB-ω), and then calculated the APFD value
for the prioritized test suite on the corresponding faulty version.

In this scenario (and the scenario of mutation-based FL), we did
not control for the number of mutation faults, but used all the muta-
tion faults constructed by each mutation technique. The reasons are
twofold: (1) the number of constructed mutation faults is essentially
the inherent characteristic of a mutation technique; (2) we have
demonstrated the effectiveness of LEAM in the scenario of muta-
tion testing regardless of using all the constructed mutation faults
or controlling for the number of mutation faults in Section 5.1.3.
More discussion about the influence of the number of constructed
mutation faults can be found in Section 5.2.3.

5.2.3 Results. Table 3 shows the average APFD results across
all the versions of all the subjects. We found that all the studied
mutation-based TCP techniques achieve better TCP effectiveness
by feeding the mutation faults constructed by LEAM than feed-
ing those by the three compared techniques on average. The same
conclusion can be obtained on each subject, but due to space limit,
we put the detailed results on each subject to our project home-
page [2]. Specifically, LEAM achieves 20.97%, 15.38%, and 275.00%
improvements over Major, PIT, and DeepMutation in terms of av-
erage APFD across all the subjects for GRK, 22.58%, 16.92%, and
280.00% improvements for GRD, and 22.95%, 15.38%, and 275.00%
improvements for HYB-ω. Furthermore, we performed a paired

sample Wilcoxon signed-rank test [82] at the significance level of
0.05 to investigate whether LEAM significantly outperforms each
compared technique on each subject for each studied mutation-
based TCP technique. All the calculated p-values are smaller than
1.86e-5 (that is far smaller than 0.05), and thus the results demon-
strate the statistically significant superiority of LEAM over all the
compared mutation techniques. Overall, LEAM significantly out-
performs all the compared mutation techniques in the scenario of
mutation-based TCP.

From our results, LEAM performs significantly better regardless
of comparison with PIT that constructs the largest number of mu-
tation faults on average or comparison with DeepMutation that
constructs the smallest number of mutation faults on average in
this scenario (as well as the scenario of mutation-based FL to be
presented in Section 5.3.3). The results further confirm the stable
effectiveness of LEAM independent of the number of mutation
faults to some degree. Also, we investigated the influence of the
number of mutation faults, which can be controlled by beam size (a
hyper parameter in LEAM), on LEAM. Due to space limit, we put
the detailed results to our project homepage [2], and the conclusion
is that with the beam size increasing, the effectiveness of LEAM in
both mutation-based TCP and mutation-based FL becomes better.
By balancing the effectiveness and efficiency, our default setting of
beam size (i.e., 64) is a good choice.

5.3 RQ3: Effectiveness Comparison in
Mutation-based Fault Localization

5.3.1 Metrics. In the scenario of mutation-based FL, we measured
the effectiveness of each studied mutation-based FL technique by
feeding the mutation faults constructed by a mutation technique,
as the metric for the quality of the mutation faults constructed
by this mutation technique. Following the existing FL work [51,
52], we adopted three most widely-used metrics to measure the
effectiveness of a mutation-based FL technique on each subject.
(1) Top-N: the number of successfully localized faults within the
Top-N position in the ranking list produced by a FL technique.



ASE ’22, October 10–14, 2022, Rochester, MI, USA Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang

Table 4: Overall effectiveness in mutation-based FL

FL Tech. Top-1 Top-3 Top-5 MFR MAR

Metallaxis

Major 35 92 114 9.56 12.42
PIT 56 102 128 8.16 11.83
DM 19 47 98 16.64 20.65

LEAM 118 182 188 3.86 4.57

MUSE

Major 35 89 111 10.99 13.11
PIT 52 97 124 9.15 11.72
DM 18 53 94 18.70 22.47

LEAM 126 181 189 3.88 5.05

Following the existing studies [51, 52], we considered N to be 1,
3, 5, respectively. (2) Mean First Rank (MFR): the mean of the
first faulty method rank for each fault. This metric emphasizes
fast localization of the first faulty element to ease debugging. (3)
Mean Average Rank (MAR): the mean of the average rank of all the
faulty methods for each fault. Different fromMFR, MAR emphasizes
precise localization for all the faulty elements. If more than two
methods have the same suspicious scores, we used the Einspect [90]
to calculate the expected rank following the existing work [90].

For a mutation-based FL technique, if using the mutation faults
constructed by a mutation technique achieves the larger Top-N
value, smaller MFR value, or smaller MAR value than that by an-
other technique, it means that the former outperforms the latter.

5.3.2 Process. Following the existing studies [51, 52], for each
faulty version in each subject, we first constructed mutation faults
by eachmutation technique respectively, and then used each studied
mutation-based FL technique to produce a ranking list of suspi-
cious methods based on the mutation faults constructed by each
mutation technique respectively. Finally, we measured the above
three metrics on each subject based on the corresponding produced
ranking list of suspicious methods.

5.3.3 Results. Table 4 shows the overall effectiveness of each stud-
ied mutation-based FL technique based on the mutation faults con-
structed by each mutation technique across all the subjects. We
found that for both Metallaxis and Muse, LEAM achieves better
FL effectiveness than all the compared techniques in terms of all
the metrics. The same conclusion can be obtained on each subject,
but due to space limit, we put the detailed results on each sub-
ject to our project homepage [2]. Overall, for Metallaxis, LEAM
achieves 237.14%, 110.71%, 521.05% improvements over Major, PIT,
DeepMutation in terms of Top-1, 59.62%, 52.70%, 76.80% improve-
ments in terms of MFR, 63.20%, 61.37%, 77.87% improvements in
terms of MAR. For MUSE, LEAM achieves 260.00%, 142.31%, 600.00%
improvements over Major, PIT, DeepMutation in terms of Top-1,
64.70%, 57.60%, 79.25% improvements in terms of MFR, 61.48%,
56.91%, 77.53% improvements in terms of MAR. We also performed
a paired sample Wilcoxon signed-rank test [82] at the significance
level of 0.05 to investigate whether LEAM significantly outper-
forms each compared technique on each subject for each studied
mutation-based FL technique. All the p-values are smaller than
3.52e-5 (that is far smaller than 0.05), and thus the results demon-
strate the statistically significant superiority of LEAM over all the

Table 5: Comparison effectiveness between LEAM and its
variant w/o statement prediction (SP) in mutation-based
TCP

TCP GRK GRD HYB-ω
LEAM w/o SP 0.60 0.60 0.59

LEAM 0.75 0.76 0.75

compared mutation techniques. Therefore, LEAM significantly out-
performs all the compared mutation techniques in the scenario of
mutation-based FL.

6 DISCUSSION
6.1 Contribution of Statement Prediction
One major component in LEAM is statement prediction, which
aims to identify the statements highly possible to be mutated under
the context of the targeted method and thus largely reduces the
search space for better prediction. Therefore, it is necessary to
investigate whether this component really contributes to LEAM.
Here, we conducted an experiment by comparing LEAM with its
variant removing the component of statement prediction in the
scenarios of mutation-based TCP and mutation-based FL. That is,
this variant randomly selects at most two statements for mutation
fault construction in LEAM. Due to space limit, we just reported the
average results across all the subjects in mutation-based TCP (in
Table 5), and the results in mutation-based FL can be found at our
project homepage [2]. We found that LEAM largely outperforms
the variant of LEAM without the statement prediction component
in terms of average APFD for each studied mutation-based TCP
technique. The results confirm the significant contribution of the
statement prediction component in LEAM.

6.2 Efficiency of LEAM
Although the time spent on our experiments mainly lies in exe-
cuting the constructed mutation faults with test cases, it is also
important to investigate the time spent on mutation fault con-
struction in order to understand the efficiency of each mutation
technique. Since each mutation technique may construct different
numbers of mutation faults, we calculated the average time spent
on constructing a mutation fault to fairly measure the efficiency of
each mutation technique. Specifically, the average time for Major,
PIT, DeepMutation, and LEAM is 0.04s, 0.003s, 0.70s, and 0.64s,
respectively. The results show that all of these mutation techniques
are efficient in terms of the time spent on mutation fault construc-
tion, and DL-based techniques spent longer time than traditional
techniques as expected.

Besides, DL-based mutation techniques involve the training pro-
cess. The training time for LEAM is about 24 hours, and we cannot
report the training time for DeepMutation since we directly used its
pre-trained model. Since the training process is offline and the built
model can be directly used by users for mutation without retraining,
the training time of LEAM is actually acceptable in practice. Over-
all, all the mutation techniques have high efficiency in mutation
fault construction, and LEAM also has acceptable training time,
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which demonstrates the practicability of LEAM by comprehensively
considering its effectiveness and efficiency.

6.3 Threats to Validity
The threat to internal validity mainly lies in our implementation
for LEAM. To reduce this kind of threat, we implemented LEAM
based on mature libraries described in Section 4.3, and two authors
have carefully checked our code.

The threat to external validity mainly lies in the subjects used in
our study. Although LEAM is general, we just evaluated its effective-
ness on Java projects (the widely-used Defects4J benchmark [41]),
which may not represent the subjects under other programming
languages. In the future, we will extend and evaluate LEAM on
more diverse subjects with different programming languages, in
order to further reduce this kind of threat.

The threat to construct validity mainly lies in the configurations
of LEAM. To reduce this kind of threat, we have reported the config-
urations of LEAM in our experiments in Section 4.3 and investigated
the influence of the important hyper-parameter (i.e., beam size) as
presented in Section 5.2.3. In the future, we will further investi-
gate the influence of other hyper-parameters in LEAM in order to
further reduce this kind of threat.

7 RELATEDWORK
In the literature, many mutation techniques have been proposed
in the area of mutation testing [21, 30, 35, 36, 69]. Most of them
require developers to design mutation operators, each of which
can conduct a simple syntactic change to the program under test,
for constructing mutation faults. Typical mutation techniques in
this category include MuJava [56], Javalanche [69], Major [40] and
PIT [21], etc. As demonstrated by the existing studies [12, 28], the
mutation faults constructed by traditional mutation techniques
may not represent real faults very well. To improve the quality of
mutation faults, Brown et al. [12] suggested to extract mutation
patterns from real-world bug-fixes to create mutation faults (called
wild-caught mutants). Inspired by this idea, DeepMutation [77],
the state-of-the-art DL-based technique, was proposed for con-
structing mutation faults by learning from a large number of real
faults via classic sequence-to-sequence NMT. In our study, we chose
the more advanced DeepMutation as a compared technique. More
details about DeepMutation have been discussed in Section 1. In
contrast, LEAM aims to further resolve the limitations of DeepMu-
tation via the syntax-guided encode-decoder architecture, and has
been shown to substantially outperform DeepMutation. Our ex-
periments have demonstrated the effectiveness of LEAM compared
with two typical traditional techniques and DeepMutation.

Patra and Pradel [65] proposed SemSeed, which extracts muta-
tion patterns from real-world bug-fixes and then generalizes them
to other code locations by measuring the similarities of identifiers
and literals based on learned token embeddings. Actually, it is not
a general-purpose mutation technique, since it (1) simply reverts
a bug-fixing code change to a mutation pattern, (2) supports only
one-line pattern, and (3) just considers the semantics of identifiers
and literals but ignores the program/method semantics. In partic-
ular, the tool is specific to JavaScript programs. Therefore, same
as the existing study [60], we did not compare with SemSeed (our

study is based on Java programs) due to its totally different design
and targeted programming language [65].

Also, Khanfir et al. [46] proposed IBIR, which utilizes natural
languages in bug reports to decide the mutation locations and then
applies the mutation patterns from a pattern-based program re-
pair tool (i.e.,TBar [54]) at the identified locations. Beller et al. [9]
proposed Mutation Monkey, which is a semi-automatic technique
by mining patterns from historical changes and then transforming
these patterns to mutation operators. Different from them, LEAM
uses the syntax-guided encoder-decoder architecture to automati-
cally construct mutation faults by learning from a large number of
real faults at the AST level.

Lastly, there are many empirical studies on investigating the ef-
fectiveness of existing mutation techniques in the literature [23, 47,
48, 60]. They tend to evaluate the quality of constructed mutation
faults by the studied mutation techniques in terms of metrics in
mutation testing. Different from them, we not only adopted the
widely-used metrics in mutation testing, but also investigated the
quality of constructed mutation faults in two downstream applica-
tions of mutation faults (i.e., mutation-based TCP and FL).

8 CONCLUSION
In this work, we propose a novel DL-based technique (i.e., LEAM)
to construct mutation faults by learning from real faults. It adapts
the syntax-guided encoder-decoder architecture by extending a
set of grammar rules specific to our mutation task, in order to en-
sure syntactic correctness of constructed mutation faults. Moreover,
it significantly reduces search space by first predicting the state-
ments to be mutated in a targeted method and improves model
performance by extracting more comprehensive features from AST.
Our extensive study on Defects4J demonstrates the effectiveness
of LEAM in three popular scenarios (including mutation testing,
mutation-based TCP, and mutation-based FL) compared with two
traditional techniques and the state-of-the-art DL-based technique.
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