
Efficiency Matters: Speeding Up Automated Testing
with GUI Rendering Inference

Sidong Feng
Monash University

Melbourne, Australia
sidong.feng@monash.edu

Mulong Xie
Australian National University

Canberra, Australia
mulong.xie@anu.edu.au

Chunyang Chen∗
Monash University

Melbourne, Australia
chunyang.chen@monash.edu

Abstract—Due to the importance of Android app quality
assurance, many automated GUI testing tools have been de-
veloped. Although the test algorithms have been improved, the
impact of GUI rendering has been overlooked. On the one
hand, setting a long waiting time to execute events on fully
rendered GUIs slows down the testing process. On the other
hand, setting a short waiting time will cause the events to
execute on partially rendered GUIs, which negatively affects the
testing effectiveness. An optimal waiting time should strike a
balance between effectiveness and efficiency. We propose AdaT,
a lightweight image-based approach to dynamically adjust the
inter-event time based on GUI rendering state. Given the real-
time streaming on the GUI, AdaT presents a deep learning model
to infer the rendering state, and synchronizes with the testing tool
to schedule the next event when the GUI is fully rendered. The
evaluations demonstrate the accuracy, efficiency, and effectiveness
of our approach. We also integrate our approach with the existing
automated testing tool to demonstrate the usefulness of AdaT
in covering more activities and executing more events on fully
rendered GUIs.

Index Terms—Efficient android GUI testing, GUI rendering,
Machine Learning

I. INTRODUCTION

GUI (Graphical User Interface) is one of the most common
forms of user interface that provides a visual bridge between
a software application and end-users through which they can
interact with each other. Since most bugs or issues can be
spotted by users in GUI, GUI testing is widely used to
ensure app quality. There are many automated GUI testing
works based on randomness [1], [2], app artifact (e.g., source
code, activity) [3], [4], reverse engineering [5], [6], and deep
learning [7], [8]. For most dynamic GUI testing tools, the more
time for testing, the higher testing coverage, the more likely to
find bugs, and the higher quality of the app release. However,
due to the budget limit and market pressure, development
teams have to meet deadlines by striking a balance between
testing time and other demands [9].

Given limited testing time, improving testing efficiency
means more test cases, leading to relatively high-quality apps.
Towards that target, there have been some works [10], [11],
[12] leveraging advanced infrastructure support to fetch GUI
hierarchy and execute events efficiently. Besides the infras-
tructure efficiency, the impact of GUI rendering has been
overlooked. GUI rendering is the act of generating a frame
from the app and displaying it on the screen [13] including

transiting from the last page, loading resources from internet,
drawing UI objects (button) into pixels following the order of
view hierarchy, etc, as seen in Fig. 1. That process may be
long depending on the app code quality, device performance
and internet bandwidth. Typically, automated testing tools
configure a fixed amount of time (throttle) between events,
in order to wait for the GUI to be fully rendered. Setting an
optimal throttle can help reduce the waiting time of automated
testing tools, resulting in higher testing efficiency.

However, the fixed throttle may not work for different
testing tools on different devices, and even different pages
in the same app due to the screen complexity difference of
each GUI. Although long throttle can bring fully rendered
GUIs, it may slow down the whole testing process for some
idle waiting (e.g., Fig. 1E). If the throttle is too short,
many GUIs may just be partially rendered which negatively
affect the testing effectiveness [14], [15], [16], [17] due to
two major reasons. First, there are many GUI testing tools
highly dependent on visual information of GUI, including
usability bug detection [18], robot testing [19], reinforcement-
learning-based app exploration [20], test case migration across
platforms [21] which require fully rendered GUI as the input.
Second, the run-time view hierarchy may be out of sync with
the rendering GUI, and the action based on the view hierarchy
may not be executed as expected, resulting in low coverage
(e.g., tapping “Screws” image by coordinates from the view
hierarchy file will be missed in rendering GUI at Fig. 1C).
Therefore, an adaptive throttle (e.g., 600ms in Fig. 1) is needed
to strike a balance between effectiveness and efficiency.

To further understand the throttling issues in automated
testing tools, we first carry out a pilot study on 3 widely-
used GUI testing tools for 32 apps to observe the GUI
rendering. Results show that a fixed short throttle setting
(e.g., 200ms) causes 24% of events on average happening on
partially rendered states. The partially rendered states mainly
include transiting state, explicit loading state, and implicit
loading state. Although extending the throttle interval can help
address the issues with a partially rendered state, an excessive
long throttle (e.g., 1000ms) reduces 52.8% testing events of
automated exploration, which can seriously impact the testing
efficiency. These findings motivate this work in finding an
adaptive throttle during GUI testing, and the difference be-
tween fully rendered and partially rendered lays the foundation
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Fig. 1: Automated GUI testing with different throttles. Green bars represent ideal throttle, red bars represent flawed throttles
that ineffectively test on partially rendered states or inefficiently stagnate on GUI.

for our approach.
We propose a lightweight approach AdaT, to automatically

throttle the events adaptive based on GUI rendering inference.
Specifically, we formulate the throttle time prediction problem
as a run-time classification task by discriminating between
fully rendered and partially rendered GUIs. We adopt a deep
learning method to model the visual information from the GUI
screenshot for inferring the GUI state. First, we leverage image
processing techniques to extract frames from GUI transiting
screencasts to construct a large-scale binary GUI dataset,
including 66,233 fully rendered and 45,623 partially rendered
GUIs. Then, we adopt a small but efficient Convolutional
Neural Network (CNN) based approach to discriminate the
GUI rendering state. To deploy our approach in testing tools
to synchronize GUI rendering inference and schedule testing
events, so as to send events until the GUI is fully rendered,
we implement a socket-based framework to stream the real-
time GUI screenshots and GUI rendering inference. Note that
one strength of our approach is that it is purely image-based,
which can be easy to deploy in real-world practice.

To evaluate the accuracy of our AdaT, we carry out a
large-scale experiment on 20,125 GUI screenshots from 1,877
Android apps. Compared with 11 state-of-the-art baselines,
our AdaT can achieve more than 99.8% accuracy in pre-
dicting GUI rendering state. We also conduct an experiment
to demonstrate that our approach can speed up automated
testing without sacrificing testing effectiveness by replaying
18 existing crash bugs from 12 defective Android apps. In
addition, the efficiency of current GUI testing tools is further
boosted by novel approach design and implementation. Given
the same run-time for the testing tool with and without AdaT,
the AdaT-enhanced tool can achieve 6.96% higher activity
coverage and execute 13.24% more events, than the vanilla
tool.

The contributions of this paper are as follows:

• To the best of our knowledge, this is the first study to
automatically infer GUI rendering status for accelerating
GUI testing. We propose a lightweight computer-vision

based approach, AdaT1 to adaptively adjust the throttle
between events.

• A motivational empirical study to understand GUI ren-
dering process in Android apps to motivate this study and
lays the foundation for our research.

• Comprehensive experiments including the performance of
AdaT and its integration with the automated testing tool
to demonstrate the accuracy, efficiency, effectiveness, and
usefulness of our approach.

II. MOTIVATIONAL STUDY

To better understand the issues of automated testing tools
with throttling, we carried out a pilot study to examine the
prevalence of these issues, so as to facilitate the development
of our tool to enhance the existing Android testing tools.

A. Experiment Setup

We collected 32 Android apps as our experimental dataset,
which were used in previous studies [22], [23], [24]. They are
all top-rated on Google Play, covering different app categories
such as news, tools, medical, etc. Details of these apps are
shown in our online appendix. These apps do not require
logging in, given that logins can be flaky which may affect the
experimental measurement. Each app was run for 3 minutes
without interruption. Note that we captured a GUI screenshot
before triggering each event to visualize what GUI the event
executed on.

B. Categorizing GUI rendering state

To understand the GUI states in testing, we conducted
a small pilot study on GUI screenshots collected by the
commonly-used automated GUI testing tool Droidbot [25],
executing with throttle 200ms interval, which is a common
setting in automated testing [26]. During the manual exam-
ination process, we noticed that there are different types of
GUI rendering states, a categorization of these states would
help clarify the issues in tools. We recruited two students as
annotators by the university’s internal slack channel and they

1https://github.com/sidongfeng/AdaT

https://github.com/sidongfeng/AdaT


(a) Transiting state (b) Explicit loading (c) Implicit loading

Fig. 2: Examples of partially rendered state.

were compensated with $12 per hour. According to the pre-
study background survey, they have labeled one UI/UX-related
dataset (e.g., GUI element bounding box). To ensure accurate
annotations, the process started with initial training. First, we
asked them to read a document [13] that outlines the GUI
rendering process. Second, we provided an example set of
annotated GUIs where the rendering states have been labeled
by authors. This enforces a deeper understanding of the GUI
rendering states. Third, we asked them to pass an assessment
test, which includes a set of test GUIs. Finally, we asked them
to manually check 1,500 random GUIs and classified them into
four categories following the Card Sorting [27] method:

Fully Rendered State. A fully rendered state represents
a GUI rendered completely with all resources loaded and
displayed.

Transiting State. As shown in Fig. 2(a), one state is
transiting to the next state. As the transition between states
takes longer than the throttle interval, two GUIs are overlapped
with each other. There are mainly two reasons for capturing
transiting state. First, the throttle setting is too short to
get GUI fully rendered. Second, there may be issues with
the app development (e.g., too many animations, defects in
the hardware acceleration), resulting in an unexpected long
rendering process.

Explicit Loading State. As shown in Fig. 2(b), it shows an
explicit loading state, depicting a loading bar in the GUI, such
as a spinning wheel, linear progressing bar, textual hint, etc. It
explicitly indicates the process or rendering is in progress and
is often used for secure data transformations, such as logging
accounts, transferring money, uploading a file, etc. During the
explicitly loading state, the GUI is non-interactive.

Implicit Loading State. As shown in Fig. 2(c), some
resources are not showing due to network latency or resource
defects. Note that, for the explicit loading state, there is always
a loading bar; while for the implicit loading state, the loading
resources need to be recognized accordingly. For example, in
Fig. 2(c), the loading resources appear as some gray layouts.

Fig. 3: Distribution of rendering states captured by Droidbot,
Monkey, and Ape.

Summary: By conducting a pilot study on GUIs collected
by Droidbot, we categorize four types of GUI rendering
states that lie into fully rendered states, and partially
rendered states (e.g., transiting state, explicit loading state,
and implicit loading state)

C. Are partially rendered states common in testing tools?

To investigate whether testing on partially rendered states is
ubiquitous in existing tools, we audited the GUI screenshots
captured from three commonly-used testing tools, including
Droidbot [25], Monkey [1], and Ape [5], with 200ms throttle
interval. In total, we obtained 875, 2,830, and 1,646 GUI
screenshots from Droidbot, Monkey, and Ape, respectively.
According to our GUI categories observed in Section II-B,
the two annotators first annotated the GUI screenshots inde-
pendently without any discussion, and then met and discussed
the discrepancies until consensus was reached.

Fig. 3 depicts the results, showing percentages of GUI state
categories in testing tools. We can see that all of the testing
tools have the issues of testing events on partially rendered
states, i.e., 23%, 32%, 17% exist in Droidbot, Monkey, and
Ape, respectively. These partially rendered states will poten-
tially reduce the testing effectiveness. As we can see that
state transition is a major partially rendered problem arises
in automated testing tools, e.g., 15%, 23%, 11%, in Droidbot,
Monkey, and Ape. This indicates that some GUI transitions
need more time (longer than 200ms) to finish the transition.
The consecutive actions by the testing tool to the incomplete
rendered GUI may not trigger the expected event, resulting in
a decrease of testing coverage.

Summary: By analyzing three commonly-used testing
tools, we find that they all encounter the issue with par-
tially rendered states, which may negatively influence the
effectiveness when testing.

D. How to avoid partially rendered states?

To address the issue of partially rendered GUIs, the simplest
way is to set a longer throttle interval, extending the inter-event
time for transiting or loading. Therefore, we investigated how
throttle affects the testing tool by running Droidbot with 5
different throttle intervals, including 200ms, 400ms, 600ms,
800ms, and 1000ms. We further annotated the GUI screenshots
following the procedure in Section II-C.



Fig. 4: Number of GUIs and activity coverage in different
throttle settings of Droidbot.

Fig. 4 depicts the results, showing the number of GUIs and
the activity coverage. We can observe that by extending the
throttle intervals, the issue with partially rendered states is
mitigated, i.e., 17%, 15%, 14%, 9%, 8% incomplete rendering
for the throttles from 200ms to 1000ms, respectively. Specifi-
cally, the issue of transiting states substantially decreases. This
indicates the GUIs can ease of transiting and loading between
events with longer intervals. However, utilizing longer throttle
intervals decreases the number of GUIs, e.g., 1,646, 1,299,
1,023, 907, 776 GUIs for throttles from 200ms to 1000ms, in-
dicating fewer events executed at the run-time. Consequently,
the activity coverage constantly drops, except for the 600ms
throttle. This is because when the testing is over-stressed (e.g.,
200ms, 400ms), the tool may encounter the issues of the
partially rendered state, leading to ineffective testing; when
the test throttling is appropriate (e.g., 600ms), the tool sends
events to fully rendered GUIs, exploring more activities; when
the testing is less-stressed (e.g., 800ms, 1000ms), the tool
may stagnate testing, leading to inefficient testing. Therefore, a
suitable throttle should strike a balance between effectiveness
and efficiency.

Summary: By analyzing five different throttle intervals,
we find that extending throttle can help address the issue
with partially rendered states. However, an excessive long
throttle can reduce the efficiency of automated exploration.

E. Why makes throttle adaptive?

These findings confirm the importance of throttle setting to
automated testing, and motivate us to design an approach for
balancing effectiveness and efficiency. While the app under
testing is mostly idle, the tool has to wait until the GUI
finishes rendering before moving to the next event. Taken
in this sense, it is worthwhile developing a new effective
and efficient method to dynamically adjust the throttle during
testing. The underlying issue is to infer GUI rendering states,
discriminating partially rendered GUI and fully rendered GUI.
Inspired by the fact that these GUIs can be easily classified by
human eyes, we propose to identify the GUI rendering states
with visual cognitive techniques. As the GUI screenshots are

Fig. 5: Overview of our approach.

easy to capture for all automated testing tools, our image-based
approach is more general and easier to deploy.

III. APPROACH

This paper proposes a simple but effective approach AdaT
to adaptively adjust the throttle base on GUI screenshots.
Given that automated testing tools test on the device, we syn-
chronously stream the GUI screenshot capturing, and detect its
current rendering state. Based on the GUI rendering inference,
we schedule the testing events, which will be sent if the GUI
is fully rendered, otherwise, wait explicitly for rendering. The
overview of our AdaT is shown in Fig. 5.

The fundamental of AdaT is to adopt a lightweight CNN-
based model to classify the GUI rendering state, which is
divided into three main phases: (i) the Data Preparation
phase, which automatically collects a large-scale dataset of
partially rendered GUIs and fully rendered GUIs, (ii) the GUI
Rendering State Classification phase that proposes a CNN-
based model to discriminate the current GUI rendering state,
and (iii) the Model Deployment phase that proposes an efficient
deployment of our model in testing tools.

A. Data Preparation

The foundation of understanding GUI rendering state and
training deep learning model is big data, whereas manual
labeling is prohibitively expensive. The goal of this phase
is to automatically collect partially rendered GUIs and fully
rendered GUIs by leveraging GUI transiting screencasts, as
shown in Fig. 6.

1) GUI Transiting Screencasts: We use the open-sourced
Rico dataset [28], which contains 44,418 transiting screencasts
from more than 9.7k different Android applications in 27
different app categories. The duration of screencasts spans
from 0.5 to 50 seconds. Each screencast contains one or
multiple user actions (e.g., tap, scroll) and no-action periods.
We discard the transiting periods of scroll action in our dataset.
This is because the GUI state can be ambiguous on the
development mechanism. For example, scrolling on a lazy-
loading GUI may collect partially rendered GUIs; scrolling a
pre-loaded GUI may collect fully rendered GUIs. Finally, we
obtain 36,038 transiting screencasts.



2) Transiting Frame Identification: A GUI transition is
comprised of frames of partially rendered and fully rendered.
To identify the frame state in the transiting screencast, we
adopt an image processing technique to build a perceptual
similarity score for consecutive frame comparison based on
Y-Difference (or Y-Diff). YUV is a color space usually used in
video encoding, enabling transmission errors or compression
artifacts to be more efficiently masked by the human percep-
tion than using a RGB-representation [29], [30]. Y-Diff is the
difference in Y (luminance) values of two images in the YUV
color space, used as a major input for the human perception
of motion [31].

Consider a transiting screencast
{
f0, f1, .., fN−1, fN

}
,

where fN is the current frame and fN−1 is the previous
frame. To calculate the Y-Diff of the current frame fN with the
previous fN−1, we first obtain the luminance mask YN−1, YN

by splitting the YUV color space converted by the RGB
color space. Then, we apply the perceptual comparison metric,
Structural Similarity Index (SSIM) [32], to produce a per-
pixel similarity value related to the local difference in the
average value, the variance, and the correlation of luminances.
A SSIM score is a number between 0 and 1, and a higher value
indicates a strong level of similarity.

To identify whether one frame is fully or partially rendered,
we look into the similarity scores of consecutive frames in the
transiting screencast as shown in Fig. 6. The first step is to
group frames belonging to the same atomic state according
to a tailored pattern analysis. This procedure is necessary
because discrete states performed on the screen will persist
across several frames, and thus, need to be grouped and
segmented accordingly. We find that a fully rendered GUI is
in a steady state where the consecutive frames are the same
or very similar for a relatively long duration, for example,
Fig. 6 (A) and (C). In contrast, a partially rendered GUI
shows a great difference on the consecutive frames, revealing
an instantaneous transition from one screen to another. For
example, as shown in Fig. 6 (B), when the user clicks a button,
the current GUI starts to fade out, in which the similarity
score starts to drop drastically. Afterwards, the next GUI starts
to fade in and the similarity score rises. According to our
observation, one common case in partially rendered GUI is
that the similarity score becomes steady for a small period
of time between two drastically droppings as shown in Fig. 6
(B). The occurrence of this short steady duration is because
of the resource loading in GUI, aligning with our observation
of implicit loading state in Section II-B. We have empirically
set 0.992 as the threshold to decide whether two frames are
similar, and 5 frames as the threshold to indicate a steady state,
in order to differentiate fully rendered and partially rendered
GUIs.

3) GUI State Sampling: For each GUI state group, we
observe that although the frames are densely recorded in the
screencasts, the rendering changes relatively slowly. To prevent
bias on redundant data, we propose an approach to sample the

2We set up that value by a small-scale pilot study

Fig. 6: Pipeline for automated data collection.

GUI frames from GUI groups. As the GUI frames in the fully
rendered group are similar or identical, we randomly select one
frame. To sample frames from partially rendered groups, we
adopt a paradigm using uniform sampling [33] to ensure the
diversity in partially rendered GUIs and to prevent the bias
of imbalance sampling between fully rendered and partially
rendered GUIs. After automated identifying and sampling, we
obtain a dataset with 66,233 fully rendered GUIs and 45,623
partially rendered GUIs.

B. GUI Rendering State Classification

In this phase, we identify whether the GUI is fully rendered
which allows testing tools to execute the next event. To differ-
entiate between fully rendered and partially rendered GUIs, we
adopt an implementation of MobileNetV2 [34], which distills
the best practices in convolutional network design into a sim-
ple architecture that can serve as competitive performance but
keep low parameters and mathematical operations to reduce
computational cost and memory overhead. In addition to the
simulator, the model can even be deployed on mobile devices
for efficient testing. This advanced network design speeds up
image classification, which is the ultimate goal of this work
to efficiently discriminate the GUI rendering states.

Specifically, we adopt a more advanced depthwise separable
convolution, combining one 3 ∗ 3 convolution layer and two
1 ∗ 1 convolution layers to capture essential information from
images. We first use a 1 ∗ 1 pointwise convolution layer to
expand the number of channels in the input feature map.
Then, we use a 3 ∗ 3 depthwise convolution layer to filter
the input feature map and a 1 ∗ 1 convolution layer to reduce
the number of channels of the feature map. In order to
improve the performance and stability between layers, we
borrow the idea of residual connection in ResNet [35] to help
with the flow of gradients. After the convolution layer, we



add Batch Normalization (BN) [36] to standardize the feature
map. Finally, the activation function, Rectified Linear Unit
(ReLU), is added to increase the nonlinear properties of the
classifier function and of the overall network without affecting
the features.

For detailed implementation, we adopt the stride of 2 in
the depthwise convolution layer to downsample the feature
map. We use ReLU6 defined as y = min(max(0, x), 6), for
the first two activation layers because of its robustness in
low-precision computation [37]. A linear transformation (also
known as Linear Bottleneck Layer) [34] is applied to the last
activation layer to prevent ReLU from destroying features.
The momentum in the BN layer is set as 0.1. To make our
training more stable, we adopt Adam as optimizer [38], and
binary CrossEntropyLoss as the loss function [39]. Moreover,
to optimize the training model, we apply an adaptive learning
scheduler, with an initial rate of 0.01 and decay to half
after 10 iterations. For data preprocessing, we resize the
GUI screenshots to 768 ∗ 448. We implement our model
based on the PyTorch framework [40]. Note that the hyper-
parameter settings are determined empirically by a small-scale
experiment.

C. Model Deployment

To make the model efficiently provide feedback on the
GUI rendering state to the automated testing tool, synchro-
nization of the GUI and the testing tool is needed. However,
capturing and transmitting GUI screenshots can be time-
consuming. Therefore, we develop a socket-based smartphone
test farm using OpenSTF [41] to stream the real-time GUI
screenshot. It is a framework to facilitate the mobile testing
process by accessing mobile devices remotely. In detail, the
framework consists of three components: Device Side, Server
Side, and Client Side. Each component leverages fast and
safe microservices to communicate with each other, such as
ZeroMQ [42] and Protocol Buffer [43]. The overview of the
model deployment is shown in Fig. 7.

The goal of Device Side is to monitor and send events to
the device as a background process. We utilize the mature and
efficient binary method Minicap [44], to capture screenshots
on the device. In detail, the screenshots are stored as a binary
format, where the first 4 bits represent the screenshot size
n, and the next n bits represent the screenshot buffer, for
accelerating data transfer between Device Side and Server
Side. The Server Side is to keep a device tracker (e.g., daemon)
to manage whenever a device is connected or if the device
gets disconnected. The Client Side leverages the WebSocket
to keep receiving the screenshot buffer from the server.

Once the screenshot buffer is received, we decode it into a
PyTorch tensor [40]. This tensor is then fed into our trained
GUI state classification model to infer the rendering state of
the current GUI. If it is fully rendered, we continue to test
on the new event, otherwise, we explicitly wait for the next
screenshot buffer. To prevent excessive time budget due to the
long duration of resource loading or wrong prediction of our
model, we set up a maximum waiting threshold. The waiting

Fig. 7: Overview of model deployment.

threshold is empirically set as 1000ms by a small pilot study.
We make the model and the source code used to set up AdaT
publicly available3.

IV. EVALUATION

The main quality of our study is the extent to whether our
AdaT can effectively and efficiently accelerate the automated
testing process. To achieve our study goals, we formulate the
following three research questions:

• RQ1: How accurate and efficient is our model in classi-
fying GUI rendering state?

• RQ2: How effective and efficient is our approach in
triggering bugs?

• RQ3: How useful is our approach when integrated in
real-world automated testing tools?

For RQ1, we present some general performance of our
model for GUI rendering inference and the comparison with
state-of-the-art baselines. For RQ2, we carry out experiments
to check if our tool can speed up the automated GUI testing,
without sacrificing the effectiveness of bug triggering. For
RQ3, we integrate AdaT with DroidBot as an enhanced
automated testing tool to measure the ability of our approach
in real-world testing environments.

A. RQ1: Performance of Model

Experimental Setup. To answer RQ1, we first evaluated the
ability of our model MobileNetV2 (in Sec. III-B) to accurately
and efficiently differentiate between fully rendered GUIs and
partially rendered GUIs. To accomplish the evaluation, we
followed the procedure to generate the dataset outlined in
Section III-A. Regarding our training-testing data split, a
simple random split cannot evaluate the model generalizability,
as the GUIs in the same app may have very similar visual
appearances. To avoid this data leakage problem [45], we split
the screens in the dataset by app, completing with the 8:1:1 app
split for the training, validation, and testing sets, respectively.
The resulting split has 79k GUIs in the training dataset, 10k
GUIs in the validation dataset, and 10k GUIs in the testing
dataset. The model was trained in an NVIDIA GeForce RTX
2080Ti GPU (16G memory) with 20 epochs for about 3 hours.

Metrics. Since we formulated our problem as an image
classification task, we adopted three widely-used metrics i.e.,
precision, recall, F1-score, to evaluate the accuracy of the
model inference. Precision is the proportion of GUIs that are

3https://github.com/sidongfeng/AdaT

https://github.com/sidongfeng/AdaT


TABLE I: Performance comparison with baselines

Methods Precision Recall F1-score Time (ms)
SIFT+SVM 0.763 0.755 0.758 15.81
SIFT+KNN 0.624 0.645 0.634 1.94
SIFT+RF 0.676 0.663 0.669 1.71
SURF+SVM 0.711 0.723 0.716 16.94
SURF+KNN 0.601 0.666 0.631 1.27
SURF+RF 0.650 0.675 0.662 1.29
ORB+SVM 0.674 0.736 0.703 18.10
ORB+KNN 0.601 0.642 0.620 1.15
ORB+RF 0.635 0.657 0.645 1.46
CNN 0.863 0.816 0.838 38.10
AdaT 0.999 0.996 0.998 43.02

correctly predicted as fully rendered among all GUIs predicted
as fully rendered.

precision =
#GUIs correctly predicted as fully rendered

#All GUIs predicted as fully rendered

Recall is the proportion of GUIs that are correctly predicted
as fully rendered among all fully rendered GUIs.

recall =
#GUIs correctly predicted as fully rendered

#All fully rendered GUIs

F1-score (F-score or F-measure) is the harmonic mean of
precision and recall, which combine both of the two metrics
above.

F1− score =
2× precision× recall

precision+ recall

For all metrics, a higher value represents better performance.
Since the ultimate goal is to speed up testing process, we
also measured the time for inference. For the inference time,
a lower time cost represents faster inference of the GUI
rendering state.

Baselines. We set up 10 baseline methods, including ma-
chine learning-based and deep learning-based, that are widely
used in image classification tasks as the baselines to compare
with our model. The machine learning-based methods first
extract visual features from the GUI screenshots, and then
employ a machine learner for the classification. The deep
learning-based methods use a convolutional neural network
to extract the visual features and then utilize fully connected
perceptrons for classification.

In detail, we adopted three types of feature extraction
methods used in machine learning, e.g., Scale invariant feature
transform (SIFT) [46], Speed up robot features (SURF) [47],
and Oriented fast and rotated brief (ORB) [48]. With these
features, we applied three commonly-used machine learning
classifiers, e.g., Support Vector Machine (SVM) [49], K-
Nearest Neighbor (KNN) [50], and Random Forests (RF) [51],
for classifying the GUI rendering state. The combination of
three types of image features and three classification learning
algorithms generated a total of 9 baselines. We also exper-
imented with off-the-shelf feature extraction methods used
in deep learning, e.g., traditional CNN with 3 convolutional
layers [52]. We set the number of neurons in fully connected
layers to 2, representing whether the GUI is in a fully-rendered
or partially-rendered state. We trained the baselines following
the same procedure of our approach.

(a) (b) (c) (d)

Fig. 8: Examples of bad cases in GUI state prediction.

Results. Table I depicts the performance of our model Mo-
bileNetV2 in classifying the fully rendered GUIs and partially
rendered GUIs. The performance of our model is much better
than that of other baselines, i.e., 30.9%, 31.9%, 31.6% boost
in recall, precision, and F1-score compared with the best
machine learning baseline (SIFT+SVM). We observe that the
methods based on deep learning perform much better than
machine learning due to the reason that the machine learning
lacks of feature introspection, as the feature of GUI rendering
state varies. Compared with the deep learning baseline, our
model further improves 13.6%, 18%, 16% in recall, precision,
and F1-score, respectively. In addition, our model takes on
average 43.02ms per GUI inference, representing the ability
of our model to accurately and efficiently discriminate the GUI
rendering state.

Albeit the good performance of our model, we still make
wrong predictions for some GUI screenshots. We manually
check those wrong GUI cases and summarise two common
causes. First, within some GUIs, the representative features are
too tiny and inconspicuous to be recognized even with human
eyes, for example, the red linear progress bar in Fig. 8(a),
and the tiny circular progress bar embedded in the image in
Fig. 8(b). Second, some negative data are not really negative
data due to the different cognition of GUI state. For example,
since Fig 8(c) and 8(d) are screenshots that contain dynamic
assets such as videos and gifs, they are automatically annotated
as partially rendered GUIs in temporal, while they seem to be
fully rendered in static.

B. RQ2: Performance of AdaT
Although we demonstrated the performance of our model

in discriminating the rendering state of a single given GUI
in the last RQ, it is still unclear if our approach can work
in real-world GUI testing. Therefore, we used the existing
developer-verified bugs to evaluate the ability of the AdaT to
help efficiently test the app without affecting the bug triggering
capability.

Experimental Setup. To answer RQ2, we collected 18
crash bugs from 12 Android apps with defects studied in
previous works [53]. Each crash bug has a trace script to
reproduce, which will constantly trigger the app crash. We
evaluated our experiments under the common frame rate 30
fps.



TABLE II: Performance comparison for our tool. “T” denotes the time to trigger the crash in seconds. “R” denotes crash
reproducibility.

Crash Bug Step
Throttle
200ms

Throttle
400ms

Throttle
600ms

Throttle
800ms

Throttle
1000ms Themis [53] Consecutive

Frame
Asynchronous

Streaming AdaT

T R T R T R T R T R T R T R T R T R
ActivityDiary#118 10 12.77 3 15.45 3 17.31 3 18.68 3 20.54 3 26.80 3 21.74 3 17.56 3 16.68 3
ActivityDiary#285 10 13.99 7 15.79 3 17.22 3 18.97 3 21.31 3 34.49 3 24.11 3 18.66 3 15.80 3
AmazeFileManager#1796 12 14.99 3 17.03 3 19.25 3 21.49 3 23.89 3 51.46 3 35.42 3 18.28 3 17.63 3
AmazeFileManager#1837 4 3.70 3 4.21 3 4.87 3 5.40 3 6.56 3 10.41 3 15.62 3 6.08 3 5.48 3
and-bible#261 18 20.31 7 23.63 7 27.29 7 30.50 7 33.88 7 84.24 3 46.45 7 39.12 3 36.01 3
AnkiDroid#4200 13 14.54 7 16.90 3 19.94 3 22.29 3 24.04 3 28.91 3 21.77 3 17.83 3 16.86 3
AnkiDroid#4451 19 23.42 3 26.77 3 30.51 3 34.08 3 37.64 3 39.52 3 42.91 3 31.88 3 29.61 3
AnkiDroid#5638 4 3.58 3 4.26 3 4.85 3 5.41 3 6.01 3 12.20 3 6.33 3 4.97 3 4.04 3
AnkiDroid#5756 16 17.92 7 21.04 7 23.67 7 26.67 3 29.76 3 34.91 3 23.37 3 21.10 3 20.73 3
AnkiDroid#6145 24 38.20 3 43.17 3 48.08 3 52.21 3 56.94 3 69.15 3 46.01 3 46.05 3 39.77 3
APhotoManager#116 3 2.39 7 2.86 7 3.22 7 3.63 7 4.07 3 10.06 3 4.44 3 2.88 3 2.38 3
collect#3222 9 9.49 7 11.26 7 12.74 3 14.40 3 16.00 3 18.34 3 13.14 3 11.85 3 10.59 3
geohashdroid#118 4 3.67 7 4.18 7 5.11 7 5.40 7 6.06 7 12.49 3 13.33 3 10.72 3 9.89 3
Omni-Notes#745 11 13.82 3 15.79 3 18.37 3 19.57 3 21.88 3 28.94 3 23.42 3 18.60 3 17.36 3
open-event-attendee#2198 5 5.19 7 5.49 7 6.30 3 7.27 3 8.09 3 14.66 3 8.12 3 6.59 3 6.33 3
openlauncher#67 4 5.21 7 5.80 3 6.38 3 7.01 3 7.61 3 8.95 3 6.68 3 5.76 3 5.31 3
Scarlet-Notes#114 23 27.92 7 32.50 3 37.06 3 40.80 3 45.87 3 67.78 3 54.13 3 34.61 3 30.10 3
WordPress#10302 3 2.48 3 2.87 3 3.29 3 3.67 3 4.09 3 10.25 3 5.10 3 2.77 3 2.32 3

Average 10.6 12.97 44% 14.94 66% 16.97 77% 18.75 83% 20.79 89% 31.31 100% 22.89 94% 17.51 100% 15.93 100%

Metrics. To measure the performance of our approach, we
employed two evaluation metrics, i.e., whether the method can
successfully reproduce the crash bug (R), and the time it takes
to trigger the bug (T). The less time it takes, the more efficient
the method can trigger the bugs.

Baselines. We set up 6 throttling methods as our baselines
to compare with our AdaT. Throttle@k is the fixed interval of
k milliseconds between events. We set the throttle k to 200ms,
400ms, 600ms, 800ms, 1000ms, as these throttle intervals are
empirically used in automated testing [26]. Themis [53] is
the benchmark method of our experimental testing dataset.
It adopts a widely-used Android testing framework UIAu-
tomator [54], which explicitly waits between events until all
resources are acquired.

In addition, we also add two derivatives of our approach to
demonstrate the impact of each component. In Section III-A,
we utilized heuristic image processing-based methods to cal-
culate the similarity of consecutive frames to automatically
discriminate the GUI rendering state. Therefore, we set up one
baseline called Consecutive Frame based on multiple screen-
shots to compare with our method based on one single GUI
screenshot. In addition, to demonstrate the strength of real-
time GUI state streaming outlined in Section III-C, we also
conducted an ablation study, namely Asynchronous Streaming.
Specifically, it leverages native ADB built-in function [55],
for example, it first adopts adb screencap to capture the
GUI screenshot to the device, and then adb pull to transmit
to the local machine for GUI rendering state classification,
asynchronously.

Results. Table II shows detailed results of the time and
reproducibility rate for each crash bug, where the number
of steps to trigger the bug of each app is also displayed. It
takes AdaT 15.93 seconds on average to reproduce all the
bugs. Instead, it takes the throttle methods of 200ms, 400ms,
600ms, 800ms, and 1000ms time intervals, on average 12.97,
14.94, 16.97, 18.75, and 20.79 seconds to reproduce the bugs,
respectively. The former three throttles only trigger fewer bugs

Fig. 9: Example of failure bug detection with short throttle.
Red box represents the test location, and green box represents
the real object location.

than the latter two, especially the 200ms setting can only
trigger 44% of the bugs due to two reasons. First, Fig. 9
shows a failure example to trigger the bugs by using the short
throttle (e.g., Throttle 200ms), that the event is executed on
an out-of-sync object, due to the GUI is rendering, and the
object position is dynamic. Second, short throttle executing
the events on partially rendered GUI can throw an unhandled
exception bug. However, these bugs will not be encountered
by real-world users, instead, they hinder the following app
exploration, resulting in the missing of the “real” bugs. In
contrast, our approach can efficiently trigger all of the crash
bugs by discriminating partially rendered GUIs.

The benchmark method Themis can also trigger all of the
bugs, but it takes much longer time, on average 31.31 seconds,
which is 2x slower than our approach. This is due to monitor-
ing the potential resources can be time-consuming, including
fetching GUI properties (e.g., widget type, location, and size)
and explicitly waiting for lazy-loading assets (e.g., video). The
more widgets in GUI, the longer it takes to determine the
rendering state for Themis, as it monitors the rendering of



all widgets in the GUI. In contrast, we adopt a lightweight
approach by leveraging easy-to-obtained GUI screenshots to
adaptively adjust the throttle interval between events, obtaining
efficiency without affecting the bug triggering capability.

Table II shows the performance of ablation baselines of the
AdaT. The heuristic image-processing method (Consecutive
Frame) triggers 94% of the crash bugs. One failure case is that
the resource loading is so slow beyond our threshold setting
in Section III-A, so it requires more frames to determine
whether the GUI is fully rendered. In contrast, our approach
can trigger all of the crash bugs in a shorter time, i.e., saving
30% time on average. This demonstrates the advantage of our
approach of using a single GUI screenshot to discriminate
the GUI rendering state, as multiple-screenshots capturing,
transmitting, and computing take time. In addition, leveraging
a real-time GUI rendering monitor speeds up the testing
process (9% faster) than that of an asynchronous monitor
(Asynchronous Streaming). As a result, AdaT does not affect
the capability to trigger the bugs, especially those caused by
partially rendered GUIs; on the other hand, AdaT can speed
up the automated testing, saving much of the time budget in
hundreds or thousands of steps in long-term testing.

C. RQ3: Usefulness of AdaT

Experimental Setup. To answer RQ3, we carried out a
usefulness study to assess the performance of our AdaT
within the automated testing tools in the real-world testing
environment. To accomplish this, we utilized 32 Android apps
which were used in our motivational study in Section II. They
are top-rated on Google Play, covering 15 app categories.

Metrics. We employed three evaluation metrics to mea-
sure the performance of our AdaT deployed in automated
testing tools, i.e., activity coverage and GUIs. For activity
coverage, we collected all the activities defined in each app
from AndroidManifest.xml following existing studies [56],
[57], and measured the percentage of the explored activities
for run-time. Note that there may be multiple GUIs with
different states in one activity, so we also used the GUIs for
evaluation [25]. The number of GUIs represents the number of
events sent at run-time, and the number of fully-rendered GUIs
represents whether the event is executed on a fully rendered
GUI. We also employed number of crashes to evaluate the
ability of our tool in bug detection. To ensure the crash validity,
we verified them from app developers via issue tracker or
direct contact. For all metrics, a higher value represents better
performance in automated app testing. We recruited two paid
annotators from online posting who have experience in GUI
annotation, to annotate the quality of GUIs. To help ensure
the validity and consistency of the annotation, we first asked
them to spend twenty minutes distinguishing the difference
between fully rendered GUIs and partially rendered GUIs.
Then, we assigned the set of captured GUI screenshots to them
to annotate independently without any discussion. After the
annotation, the annotators met and sanity corrected the subtle
discrepancies. Any disagreement would be handed over to one
author for the final decision. Note that the annotators and the

TABLE III: Usefulness in real-world testing tool. “FR” de-
notes the fully rendered GUIs.

Method Throttle Coverage # Crashes FR GUI
(ms) (Total)

Droidbot

200 36.19% 16 2,194 (2,832)
400 34.47% 15 1,758 (2,199)
600 35.97% 15 1,257 (1,501)
800 35.11% 14 750 (859)

1000 30.15% 9 462 (504)
Droidbot+AdaT adaptive 43.14% 21 2,848 (3,207)

author do not know whether the GUI is captured from our
approach or baselines.

Baselines. To demonstrate how our AdaT can enhance
real-world testing environments, we integrated our approach
into the mature automated testing tool Droidbot [25], namely
Droidbot+AdaT. In detail, Droidbot+AdaT does not need to
carefully set the throttle interval between events. It is adaptive
to GUI rendering, moving to the next event as soon as GUI
rendering is complete. We have released our integrated version
of Droidbot to public4. We set up 5 throttle intervals as
our baselines, including 200ms, 400ms, 600ms, 800ms, and
1000ms. Each method runs on the app for 10 minutes without
interruption. To ensure the validity of the comparison, we used
the configurations in Droidbot, such as using greedy depth-first
to search activities, randomly generating events, etc.

Results. Table III shows the results of the performance
between Droidbot and Droidbot+AdaT. Droidbot+AdaT
achieves a median activity coverage of 43.14% across 32
Android apps, which is 6.95% higher even compared with
the best baseline (e.g., 36.19% in Throttle 200ms). This is
because the dynamic wait in Droidbot+AdaT allows access to
more activities that short throttling might disrupt. For example,
when the GUI is in rendering progress, a short throttle testing
might execute events on partially rendered GUIs to hinder
exploration, or send backward events to abandon exploration.
In addition, Droidbot+AdaT outperforms the baselines by
exploring 3,207 GUI states, and 88.81% are fully rendered.
Overall, the results indicate the effectiveness and efficiency of
AdaT-enhanced tool in covering most of the activities, GUI
states, and fully rendered GUIs, compared with the vanilla
tool. As more activities and states are explored, Droidbot+Ours
triggers the most crash bugs (21) compared to the baselines.

V. THREATS TO VALIDITY

In our experiments evaluating our model, threats to internal
validity may arise from the leakage of testing dataset. To
mitigate this threat, we proposed the training-testing dataset
split on apps, representing an unbiased testing set of GUIs.
Another potential confounding factor concerns the quality of
dataset used to train, test, and evaluate our model performance.
The use of automated mechanism to collect our dataset may
generate some noise data. To help mitigate the threat, we
trained and evaluated our model in a large-scale dataset
of 20,125 GUIs, that training a deep learning-based model

4https://github.com/sidongfeng/AdaT

https://github.com/sidongfeng/AdaT


with sufficient good data could tolerate a small amount of
noise [58], [59].

The main external threats to the validity of our work
are the representative of the apps and the Android testing
tools selected to evaluate the usefulness of our approach. To
mitigate this threat, we selected the 32 top apps from 15
different categories on the Google Play Store. The selected
apps vary greatly in their functionalities. To demonstrate the
improvements that our approach can have on Android testing
tools, we selected Droidbot as it is widely used in previous
studies [18], [7].

Another threat to the validity arises from the randomness of
the Android testing tools, apps, and emulators in our study and
evaluation. Namely, across different runs of the same tool, app,
and emulator, the obtained metrics could change. To mitigate
this threat, we ran each pair of tools and apps two times, where
each run was performed on a newly-created emulator with the
same software and hardware configurations throughout all of
the experiments. The results were then from the aggregation
of the two runs for each pair of tools and apps.

VI. DISCUSSION

Generality for automated testing tools. Results in RQ3
(Section IV-C) have initially demonstrated the usefulness of
our approach in real-world practice when integrated into
automated testing tools like Droidbot. Our approach is a purely
image-based method, relying only on GUI screenshots. As the
GUI screenshots are easy to capture in automated testing tools,
our approach should play a bigger role in real-world practice.

Generality across apps and platforms. Supporting tests on
native and hybrid apps is a critical task in practice [60]. As the
GUI screenshots from different types of apps exert almost no
difference, our approach can be generalized in testing different
types of apps. Another potential interest in automated testing
is to support different platforms, e.g., iOS and Web. While we
focus on the Android platform for brevity in this study, the
tool can be extended to other platforms. We have conducted
a small-scale experiment of 50 GUI screenshots from iOS
and Web. Results show that our approach can achieve 92%
and 86% F1-score in identifying GUI rendering state. We
believe that the performance will be further boosted after fine-
tuning. We have released all of our model and source code for
reproducibility.

Collections of High-quality GUI dataset. A large-scale
of GUI collection is the foundation for many downstream
deep-learning based GUI related research such as code gener-
ation [61], [57], [62], [63], [64], [65], GUI design [66], [67],
[68], [69], [70], [71], [72], GUI testing [73], [74], [75], [76],
[77], [78], [79], [80], etc. Existing studies [81] have identified
the limitations in the mobile GUI dataset, and attempted to
denoise the dataset based on GUI widget classname and GUI
layout. Our work complement with noise removal study, as
results in RQ3 (Section IV-C) have illustrated the benefit of our
approach in collecting high-quality (e.g., fully rendered) GUIs,
laying a solid foundation for other works in this direction.

VII. RELATED WORK

As our work is to utilize GUI rendering state to tackle the
efficiency issue for accelerating automated GUI testing, we
introduce related works in two aspects, i.e., automated GUI
testing, and efficiency support for testing.

A. Automated GUI Testing

A growing body of tools has been dedicated to assist-
ing in automated app testing. One of the earliest efforts is
Monkey [1], Google’s official testing tool for Android apps,
intended for generating random user events such as clicks,
touches, or gestures, as well as a number of system-level
events on the GUI. Subsequent efforts have led to test case
generation based on randomness strategies [2], [82], [83], or
app artefacts (e.g., activity, source code) [3], [4].

Recent tools [84], [25], [85] leverage dynamic and static
analysis to reverse engineer a stochastic model from GUI to
generate more robust automated testing. Gu et al. [5] present
a GUI event-refinement model, that uses GUI runtime infor-
mation to evolve an initial model to generate precise events.
Su et al. [6] propose Stoat that assigns GUI runtime wid-
gets with different probabilities of being selected to achieve
effective testing. Moreover, computer vision techniques have
been applied to further improve the effectiveness of automated
GUI testing. Degott et al. [8] adopt reinforcement learning to
identify valid interactions for a GUI element (e.g., a button
allows to be clicked but not dragged) to guide testing. Li et
al. [7] take a sequence of GUIs captured from manual events to
learn a model to predict human-like interactions on the given
app. Different from these approaches that focus on sophisti-
cated GUI algorithms for achieving higher test coverage, our
approach aims to accelerate automated testing by scheduling
the test events with GUI rendering status inference, leading to
substantial testing efficiency and effectiveness improvement.

B. Efficiency Support for Testing

There have been many works trying to improve infras-
tructure support for the purpose of efficient testing. Hu et
al. [10] propose AppDoctor that instruments the target apps
using invocations of event handlers to quickly find potential
sequences of error-triggering GUIs. Song et al. [11] improve
the efficiency of AppDoctor by leveraging direct invocations.
Wang et al. [12] propose an Android tool Toller that injects
into the testing device to efficiently access GUI layout and
execute events. Different from those infrastructure support,
we aim to speed up automated testing by adaptive throttling,
scheduling the testing events for efficiency improvement.

Adaptive throttling is a common practice for efficient testing
on the web. Selenium [86] proposes a feature called Explicit
Wait to tell the testing driver to wait for an explicit amount
of time until the presence of elements. Similar to Selenium,
many tools build this feature for mobile testing, such as
Appium [87], UIAutomator [54], etc. Specifically, those tools
verify the presence of elements by fetching the view hierarchy
of the GUI. However, subsequent studies [81] find that the
fetched GUI views may be out of sync, leading to tests



on misaligned or invalid objects. Furthermore, those tools
only check the validity of the GUI view hierarchy, while
not resources, which may restrict the capability of testing
exploration. In contrast, we leverage the GUI as a whole
with visual information to dynamically adjust the throttle to
schedule the events when the GUI is fully rendered, which is
analogous to human viewing and interacting.

VIII. CONCLUSION

Automated app testing is crucial to improve app quality.
Despite the numerous automated testing tools, one often over-
looked aspect is the throttle between events. A short throttle
may reduce the effectiveness of testing, while a long throttle
may reduce the efficiency of testing. To strike the balance,
we propose AdaT, a lightweight image-based approach to
adaptively adjust the throttle based on the GUI rendering
inference. Given the real-time streaming on GUI, AdaT adopts
a deep learning model to infer the rendering state to adjust
events scheduling, sending events when the GUI is fully
rendered. The experiments demonstrate the performance and
usefulness of our approach in improving the efficiency and
effectiveness of automated testing.

In the future, we will keep improving our AdaT for better
efficiency in two aspects. First, we can reduce the computa-
tional cost of inference by optimizing network architecture.
Second, the process of our AdaT can be accelerated by more
advanced infrastructure support. We also want to deploy our
approach to mobile devices, so that it can be applied to on-
device testing. It can be achieved by quantizating our model
into a lite-based model.
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