
Taming Google-Scale Continuous Testing

Atif Memon, Zebao Gao

Department of Computer Science,

University of Maryland,

College Park, USA

Email: {atif,gaozebao}@cs.umd.edu

Bao Nguyen, Sanjeev Dhanda, Eric Nickell, Rob Siemborski, John Micco

Google Inc., Mountain View, USA

Email: {baonn,sanjeevdhanda,esnickell,robsiemb,jmicco}@google.com

Abstract—Growth in Google’s code size and feature churn
rate has seen increased reliance on continuous integration (CI)
and testing to maintain quality. Even with enormous resources
dedicated to testing, we are unable to regression test each code
change individually, resulting in increased lag time between code
check-ins and test result feedback to developers. We report results
of a project that aims to reduce this time by: (1) controlling test
workload without compromising quality, and (2) distilling test
results data to inform developers, while they write code, of the
impact of their latest changes on quality. We model, empirically
understand, and leverage the correlations that exist between our
code, test cases, developers, programming languages, and code-
change and test-execution frequencies, to improve our CI and
development processes. Our findings show: very few of our tests
ever fail, but those that do are generally “closer” to the code
they test; certain frequently modified code and certain users/tools
cause more breakages; and code recently modified by multiple
developers (more than 3) breaks more often.

Keywords-software testing, continuous integration, selection.

I. INTRODUCTION

The decades-long successful advocacy of software testing

for improving/maintaining software quality has positioned it

at the very core of today’s large continuous integration (CI)

systems [1]. For example, Google’s Test Automation Platform

(TAP) system [2], responsible for CI of Google’s vast majority

of 2 Billion LOC codebase—structured largely as a single

monolithic code tree [3]—would fail to prevent regressions

in Google’s code without its testing-centric design. However,

this success of testing comes with the cost of extensive

compute cycles. In an average day, TAP integrates and tests—

at enormous compute cost—more than 13K code projects,

requiring 800K builds and 150 Million test runs.

Even with Google’s massive compute resources, TAP is

unable to keep up with the developers’ code churn rate—

a code commit every second on the average—i.e., it is not

cost effective to test each code commit individually. In the

past TAP tried to test each code change, but found that

the compute resources were growing quadratically with two

multiplicative linear factors: (1) the code submission rate

which (for Google) has been growing roughly linearly and (2)

the size of the test pool which also has been growing linearly.

This caused unsustainable demand for compute resources,

hence TAP invented a mechanism to slow down one of the

linear factors by breaking a TAP day into a sequence of

epochs called milestones, each of which integrates and tests a

snapshot of Google’s codebase. I.e., TAPs milestone strategy

is to bundle a number of consecutive code commits together,

and run (or cut) a milestone as frequently as possible given

the available compute resources.

A milestone is typically cut every 45 minutes during peak

development time, meaning that, in the best case, a developer

who submitted code has to wait for at least one milestone

before being notified of test failures. In practice, however,

because the TAP infrastructure is large and complex, with

multiple interconnected parts, designed to deal with large

milestone sizes—as large as 4.2 million tests as selected

using reverse dependencies on changed source files since

the previous milestone—it is susceptible to additional delays

caused by Out of Memory errors, machine failures, and

other infrastructure problems. In our work, we have observed

unacceptably large delays of up to 9 hours.

In this paper, we describe a project that had two goals for

aiding developers and reducing test turnaround time. First,

we wanted to reduce TAP’s workload by avoiding frequently

re-executing test cases that were highly unlikely to fail. For

example, one of our results showed that of the 5.5 Million

affected tests that we analyzed for a time period, only 63K

ever failed. Yet, TAP treated all these 5.5 Million tests the

same in terms of execution frequency. Valuable resources may

have been saved and test turnaround time reduced, had most of

the “always passing” tests been identified ahead of time, and

executed less frequently than the “more likely to fail” tests.

Our second goal was to distill TAP’s test results data, and

present it to developers as actionable items to inform code

development. For example, one such item that our project

yielded was “You are 97% likely to cause a breakage because
you are editing a Java source file modified by 15 other
developers in the last 30 days.” Armed with such timely data-

driven guidance, developers may take preemptive measures to

prevent breakages, e.g., by running more comprehensive pre-

submit tests, inviting a more thorough code review, adding test

cases, and running static analysis tools.

Because we needed to deploy our results in an Industry

setting, our project faced a number of practical constraints,

some due to resources and others stemming from Google’s

coding and testing practices that have evolved over years to

deal with scale and maximize productivity. First, Google’s

notion of a “test” is different from what we understand to

be a “test case” or “test suite.” Google uses the term “test

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.16

231

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.16

233

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track

978-1-5386-2717-4/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEIP.2017.16

233

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

target,” which is essentially a buildable and executable code

unit labeled as a test in a meta BUILD file. A test target may

be a suite of JUnit test cases, or a single python test case,

or a collection of end-to-end test scripts. For our work, this

meant that we needed to interpret a FAILED outcome of a test

target in one of several ways, e.g., failure of a single JUnit

test case that is part of the test target, or a scripted end-to-end

test, or single test case. Hence, we could not rely on obtaining

a traditional fault matrix [4] that maps individual test cases to

faults; instead, we had sequences of time-stamped test target

outcomes. Moreover, the code covered by a test target needed

to be interpreted as the union of all code elements covered by

its constituent test cases. Again, we could not rely on obtaining

a traditional coverage matrix [4] that maps individual test cases

to elements they cover.

Second, we had strict timing and resource restrictions. We

could not run a code instrumenter at each milestone on the

massive codebase and collect code coverage numbers because

this would impose too large an overhead to be practical.

Indeed, just writing and updating the code coverage reports

in a timely manner to disk would be an impossible task.

We also did not have tools that could instrument multiple

programming languages (Java C++, Go, Python, etc.) that form

Google’s codebase and produce results that were compatible

across languages for uniform analysis. Moreover, the code

churn rates would quickly render the code coverage reports ob-

solete, requiring frequent updates. The above two constraints

meant that we could not rely on the availability of fault and

coverage matrices, used by conventional regression test selec-

tion/prioritization approaches [5] that require exact mappings

between code elements (e.g., statements [6], methods [7]),

requirements [8] and test cases/suites.

Third, the reality of practical testing in large organizations

is the presence of tests whose PASSED/FAILED outcome may

be impacted by uncontrollable/unknown factors, e.g., response

time of a server; these are termed “flaky” tests [9] [10].

A flaky test may, for example, FAIL because a resource is

unavailable/unresponsive at the time of its execution. The same

test may PASS for the same code if it is executed at a different

time after the resource became available. Flaky tests exist for

various reasons [11] [12] and it is impossible to weed out all

flaky tests [13]. For our work, this meant that we could not

rely on regression test selection heuristics such as “rerun tests
that failed recently” [14] [15] as we would end up mostly

re-running flaky tests [1].

Because of these constraints, we decided against using

approaches that rely on fine-grained information per test case,

e.g., exact mappings between test cases and code/requirements

elements, or PASSED/FAILED histories. Instead, we devel-

oped an empirical approach, guided by domain expertise and

statistical analysis, to model and understand factors that cause

our test targets to reveal breakages (transitions from PASSED-

to-FAILED) and fixes (FAILED-to-PASSED). This approach

also worked well with our goal of developing data-driven

guidelines for developers because it yielded generalized, high-

level relationships between our artifacts of interest.

In particular, we modeled the relationships between our test

targets and developers, code under test, and code-change and

test execution frequencies. We found that

• looking at the overall test history of 5.5 Million affected

tests in a given time period, only 63K ever failed; the rest

never failed even once.

• of all test executions we examined, only a tiny fraction

(1.23%) actually found a test breakage (or a code fix)

being introduced by a developer. The entire purpose of

TAP’s regression testing cycle is to find this tiny percent

of tests that are of interest to developers.

• the ratio of PASSED vs. FAILED test targets per code

change is 99:1, which means that test turnaround time

may be significantly reduced if tests that almost never

FAIL, when affected, are re-executed less frequently than

tests that expose breakages/fixes.

• modeling our codebase as a code dependency graph, we

found that test targets that are more than a distance of

10 (in terms of number of dependency edges) from the

changed code hardly ever break.

• most of our files are modified infrequently (once or twice

in a month) but those modified more frequently often

cause breakages.

• certain file types are more prone to breakages,

• certain users/tools are more likely to cause breakages,

• files within a short time span modified by 3 (or more) de-

velopers are significantly more likely to cause breakages

compared to 2 developers.

• while our code changes affect a large number of test

targets, they do so with widely varying frequencies per

target, and hence, our test targets need to be treated

differently for test scheduling.

These findings have significant practical implications for

Google that is investing in continued research as well as ap-

plied techniques that have real, practical impact on developer

productivity while reducing compute costs. In particular, we

want to reduce the resources used in our CI system while

not degrading the PASSED/FAILED signal provided to our

developers. This research has shown that more than 99% of all

tests run by the CI system pass or flake, and it has identified

the first set of signals that will allow us to schedule fewer

tests while retaining high probability of detecting real faults,

using which we can improve the ratio of change (fault or

fix) detection per unit of compute resource spent. The key to

our success is to perform this reduction, while simultaneously

retaining near certainty of finding real program faults when

they are inserted; this research enables that goal. Specifically,

from this research we plan to expand the set of signals

about when tests actually fail, and use that information to

improve test selection, running fewer tests while retaining high

confidence that faults will be detected. We then plan to feed

these signals into a Machine Learning tool to produce a single

signal for reducing the set of selected tests. We also plan to

provide feedback to developers—prior to code submission—

that certain types of changes are more likely to break and

232234234

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

should be qualified and scrutinized more closely. For example,

our data shows that a single file changed many times by

different people is almost 100% likely to cause a failure. Doing

more work to qualify such submissions seems like an obvious

way to avoid the impact of a build breakage.

In the next section, we provide more background of how

TAP works, and in Section III describe the nature of our data.

In Section IV, we develop the hypotheses for our project and

discuss results. We present related work in Section V, and

finally, conclude with a discussion of ongoing and future work

in Section VI.

II. TAP IN A NUTSHELL

We now discuss aspects of TAP that are necessary to

understand our project. For our purposes, we can envision

Google’s code to be maintained in a conventional code

repository that follows a Unix-like directory structure for

files and folders. Certain folders are called packages, each

with its own BUILD file (the interested reader is referred to

the tool called Bazel [16] that follows similar conventions)

that defines build dependencies between files and packages.

Certain syntactic conventions mark test targets. For example,

in the BUILD file code segment shown in Figure 1, the

test target framework gradients test requires 1 test source file

(framework/gradients test.cc) and 11 packages (the first 5 use

BUILD rules from the same BUILD file, which is why they

have no leading absolute-path-like label, and the remaining 6

from the //tensorflow/core module). Such a specification gives

maximum flexibility to developers, allowing them to designate

any buildable code (at the package granularity) as a test target,

in this example via the tf cc test construct.

package(
default visibility = [”//visibility:public”],

)
tf cc test(

name = ”framework gradients test”,
srcs = [”framework/gradients test.cc”],
deps = [

”:cc ops”,
”:grad op registry”,
”:grad ops”,
”:gradients”,
”:testutil”,
”//tensorflow/core:all kernels”,
”//tensorflow/core:core cpu internal”,
”//tensorflow/core:framework”,
”//tensorflow/core:test”,
”//tensorflow/core:test main”,
”//tensorflow/core:testlib”,

],
)

Fig. 1. tensorflow/cc/BUILD

Developers constantly make changes to files and folders.

Every code commit gets assigned a unique identifier called a

changelist ID (CL). For example, Figure 2 shows a sequence

of 16 CLs on the horizontal axis (cl1 – cl16). In this case, the

ordering of the numbers indicates the order in which the code

was submitted, i.e., cl1 was submitted first, followed by cl2,

cl3, and so on.

A CL contains files that were changed by the developers.

TAP starts with these, uses build dependencies in the BUILD

Change Lists

A
ffe

ct
ed

 T
es

t T
ar

ge
t S

et

t14

t13

t12

t11

t10

t9

t8

t7

t6

t5

t4

t3

t2

t1
cl1 cl2 cl3 cl4 cl5 cl6 cl7 cl8 cl9 cl10 cl11 cl12 cl13 cl14 cl15 cl16

Fig. 2. Changelists and associated test targets.

files (and other programming language-specific implicit depen-

dencies) rules to create a reverse dependency structure that

eventually outputs all test targets that directly or indirectly

depend on the modified files; these are called AFFECTED test

targets. TAP needs to execute these AFFECTED test targets

to ensure that the latest changes did not cause breakages. For

our example of Figure 2, cl1 affected test targets t1, t3, t8,

and t13 (shown as boxes in the figure). As discussed earlier,

the granularity of these AFFECTED test targets depends on

how their individual BUILD files are written, dependencies

between packages, programming language used to code the

tests, and how the developer chose to organize the code/tests.

Test target t1 might be a JUnit test suite; t3 a single Python

test; t8 an end-to-end test script; and so on. TAP knows to put

them together as an AFFECTED set for cl1 only because of

defined dependencies [17].

As mentioned earlier, Google’s code churn rate prohibits the

execution of all affected targets (which may run into Millions

for some CLs and take hours to run) for each individual

change. Hence, TAP postpones running test targets until it

determines a time to cut a milestone using heuristics based

on the tradeoff between delay to execute work, and getting

the data about the freshest CL possible when that delay is

minimum. All affected test targets that remained unexecuted

since the previous milestone are run together.

Let’s assume that a milestone was cut just before cl1 in

Figure 2. Assume also that the next milestone was cut at

cl16. This means that all test targets affected from cl1 through

cl16 will be executed at this milestone. Because there will be

overlap in how test targets are affected across CLs, time and

resources are saved with this approach because test targets

are executed only at their latest affecting CL. For example,

even though t14 is affected by multiple CLs (cl2, cl4, cl8,

cl13, cl16), it is only executed once at cl16, its latest affecting

CL. All the targets actually executed are shown as black

boxes in Figure 2. A milestone run will only determine a

PASSED/FAILED status for these (black-filled-boxes) targets;

others will remain AFFECTED, until (if) run on demand by

another process.

233235235

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

III. UNDERSTANDING OUR DATASET

We analyzed months of TAP data for this project. In this

paper, we report results of studying over 500K CLs, from

Feb. 11, to Mar. 11, 2016, that affected more than 5.5 Million

unique test targets, and over 4 Billion test outcomes.

In this section, we discuss the primary characteristics of our

data that helped us to understand it, and form our hypotheses

for further experimentation. We first wanted to see how fre-

quently CLs affected individual test targets, and whether there

was in fact overlap in affected test targets across CLs. Our

histogram (log scale vertical axis) of how frequently targets

are affected is shown in Figure 3. The height of Column x
shows the number of test targets that are affected x times.

For example, the first column shows that 151,713 targets were

affected only once; Column 289 shows that 749 targets were

affected 289 times. The two vertical lines, marked with 50%

and 75%, tell us that 50% of test targets were affected fewer

than 14 times; 75% were affected fewer than 46 times. Because

test targets are affected at widely varying rates, some several

orders of magnitude more than others, we started to question

TAP’s one-size-fits-all milestone approach of scheduling and

executing test targets.

75% 50%
151,713

749

14 46 289

Fig. 3. Affected Targets Frequency.

Next, we wanted to examine the test target outcomes and

their distribution. Figure 4 (again the vertical axis is log scale)

shows that AFFECTED and PASSED targets formed the bulk

of our outcomes, followed by SKIPPED (did not run because

they did not match TAP’s selection criteria, e.g., they were

too large, marked NOTAP, etc.). FAILED were next but they

constituted only a small fraction of the full set. The remaining

outcomes are too few, and hence grouped together as OTHERS

for ease of presentation. We also wanted to see how our test

target outcomes looked for an average CL, so we averaged

the test outcomes across CLs. As Table I shows, almost half

of the test targets PASSED. Of the remaining, 43% remained

AFFECTED (not executed) and 7.4% were SKIPPED. Less

than 0.5% FAILED. This result was useful for our project as

it informed us that FAILED test targets make up a very small

fraction of our overall space. That AFFECTED test targets

make up a large fraction informed us of the usefulness of

TAP’s current milestone-based strategy; significant resources

C
ou

nt
 (L

og
 s

ca
le

)

Test Outcome

Fig. 4. Distribution of Overall Test Outcomes.

TABLE I
PER CHANGELIST OUTCOMES.

Outcome Avg. % per CL

PASSED 48.4964
AFFECTED TARGET 43.0578

SKIPPED 7.4905
FAILED 0.4186

SIX OTHER CATEGORIES 0.1244

were saved because these test targets were not executed at

each and every affecting CL.

We next examined the overall history of each test target.

We found (Table II) that 91.3% PASSED at least once and

never FAILED even once during their execution history. Only

2.07% PASSED and FAILED at least once during their entire

execution history. After filtering flaky test targets from these,

we were left with 1.23% that actually found a test breakage

(or a code fix) being introduced by a developer. This small

percentage is what developers care about most as they inform

developers of breakages and fixes. We were encouraged by

this result because if we could develop mechanisms to identify

test targets that are unlikely to reveal breakages and fixes, and

execute them less often than others, we may be able to save

significant resources and give faster feedback to developers.

IV. HYPOTHESES, MODELS, AND RESULTS

The preliminary analysis of our dataset, discussed in the

previous section, indicated that there may be opportunities to

identify test targets that almost never fail; these make up the

bulk of TAP’s test targets. Significant resources may be saved

– and put to better use – if these test targets are executed less

frequently than other more-likely-to-fail test targets. Moreover,

having a general understanding of these two populations of

test targets may help to develop code quality guidelines for

developers. To this end, we used our domain expertise to

develop and study a number of hypotheses. In this section

we present those that led us to valuable insights into Google’s

code development and testing practices, as well as how we

could improve test target scheduling.

234236236

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PARTITIONING OUR DATASET BY PASSED/FAILED HISTORY.

Total Targets 5,562,881
Never FAILED; PASSED at least once 5,082,803
Never PASSED; FAILED at least once 15,893

Never PASSED/FAILED; most likely SKIPPED 349,025
PASSED at least once AND FAILED at least once 115,160

Flakes 46,694 of 115,160
Remaining (with PASSED/FAILED Edges) 68,466

A. Hypothesis 1: Test Targets “Farther Away” from Modified
Code Do Not Detect Breakages.

Lets first formally define the term “farther away.” As is

generally the case with most of today’s software, build-

ing a Google package requires other packages to be built.

These “dependencies” are explicitly specified in a BUILD

file associated with a package. The lower-level packages may

depend on other yet-lower-level packages. Such dependen-

cies form a dependency structure that may be modeled as

a directed acyclic graph (DAG). For example, in Figure 5,

the top node org/eclipse/platform/ui:ui tests requires two

packages //ui/tests/ManualScenarioTests and //ui/jface tests,

which in turn require 6 more packages. Even though the de-

pendencies for //ui/tests/ManualScenarioTests are not shown,

all the lower-level packages ultimately depend on the bot-

tom node //ui/jface/tests/viewers/TestElement.java. Whenever

//ui/jface/tests/viewers/TestElement.java is changed, all the

packages in Figure 5 need to be built again.

org/eclipse/platform/ui:ui_tests

//ui/tests/ManualScenarioTests //ui/jface_tests

//ui/jface/tests/action //ui/jface/tests/dialogs //ui/jface/tests/fieldassit //ui/jface/tests/images //ui/jface/tests/viewers

//ui/jface/tests/layout

//ui/jface/tests/window //ui/jface/tests/wizards

//ui/jface/tests/viewers/interactive

//ui/jface/tests/viewers/AllTests

//ui/jface/tests/viewers/interactive/AddElementAction.java

//ui/jface/tests/viewers/TestModel.java

//ui/jface/tests/viewers/interactive/TestElement.java

//ui/jface/tests/viewers/TreeViewerTest

//ui/jface/tests/viewers/TreeViewerColumnTest

Fig. 5. Modeling Distance.

It is this structure that TAP employs to compute the set of

AFFECTED test targets for a given committed code change.

Assuming that the file TestElement.java has changed in a CL.

TAP uses a reverse dependency graph to compute all test

targets that may be impacted by the change. In our example,

the top-level node org/eclipse/platform/ui:ui tests happens to

be a test target, and hence, is added to the set of AFFECTED

targets. Because Google’s codebase is very large, the set of

AFFECTED targets can get quite large. In our work, we have

seen set sizes as large as 1.6 Million.

We define the term MinDist as the shortest distance (in

terms of number of directed edges) between two nodes in

our dependency graph. In our example from Figure 5, the

MinDist between ui tests and TestElement.java is 5 (we write

in functional notation MinDist(ui tests, TestElement.java) =

5). In our work on Google’s code repository, we have seen

MinDist values as high as 43.
We hypothesize that code changes have limited direct im-

pact beyond a certain MinDist value. This makes intuitive

sense because packages do not use all the code of other

packages that they depend upon. They may use the maximum

amount of code of packages at MinDist=1, i.e., packages

they directly depend on. But this is expected to reduce as

MinDist values grow large, such as 40. For our purposes, this

means that test targets that are farther away (higher values of

MinDist) from modified code will not detect breakages.
We start by showing, in Figure 6, the distribution of all

MinDists in our dataset. To collect this data, we examined all

files modified in all changelists, and for each, computed the

MinDist to all reachable AFFECTED test targets. As the figure

shows, the vast majority of MinDist values are between 5 and

10. They drop beyond 10 but go as high as 40. We remind the

reader that we are showing only the the shortest path between

our AFFECTED test targets and modified files; if one looked

at all paths, not only the shortest, then one would certainly

find much longer paths.

MinDist

Fr
eq

ue
nc

y
(in

 1
00

0’
s)

300

225

150

75

0
0.5 10.5 20.5 30.5 40.5

Fig. 6. Distribution of All MinDists.

We are interested in MinDist values for test targets that tran-

sitioned from PASSED to FAILED (breakage) and FAILED

to PASSED (fix) for a given change. We call these our edge
targets; our developers are most interested in these edge targets

as they provide information regarding fixes and breakages.
Because of the way Google reports test targets results, in

terms of test target outcome per CL, we need to define MinDist

per CL and test target pair, instead of per file and test target

pair.

Definition: For a given test target Tj and an affecting change-

list CLi, we say that the relation MinDist(CLi, Tj)=n holds

iff there exists a file F modified at CLi such that MinDist(Tj ,

F) = n. �.

Note that MinDist(CLi, Tj) as defined above is a relation,

not a function, i.e., MinDist(CLi, Tj)=n may hold for several

values of n, determined by our original MinDist() function

defined for a file and test target pair.
Next we develop the MinDist relation for a specific test

target Tj . Intuitively, this relation holds for all values returned

by our original MinDist() function for all constituent files

modified in every affecting CL.

Definition: For a test target Tj , we say the relation

235237237

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

MinDist(Tj)=n holds iff there exists a changelist CLi that

affects Tj and MinDist(CLi, Tj)=n also holds. �.

Given all the MinDist values for a test target Tj , we can

compute the probability that MinDist(Tj)=x for all values of x.

We show (Figure 7 smoothed for visualization) the probability

distribution of one such test target Tj from our data. The plot

shows that most (25%) of the MinDist values for Tj were 10,

followed by 18, 21, and so on. There were none beyond 22

or lower than 7.

P
ro

ba
bi

lit
y

MinDist

0.3

0.25

0.2

0.15

0.1

0.05

0
1 11 21 31 41

Fig. 7. MinDist Values for Tj plotted as a Smoothed Curve.

We computed the same probabilities for all the test targets

in our dataset. Aggregating them gave us the probability

distribution of our entire population as shown in Figure 8.

As expected, this curve follows the trend shown in Figure 6.

P
ro

ba
bi

lit
y

MinDist

0.12

0.09

0.06

0.03

0
1 11 21 31 41

Fig. 8. Probability Distribution of Our Population.

Figure 8 shows the entire population of MinDist values,

much of which is of little interest to us. We are eventually

interested in our edge targets, so we should eliminate all non-

edge test target information. Moreover, each CL describes

multiple file modifications, which means that we will have

multiple MinDist values per CL (one for each file) and test

target pair; without loss of accuracy, we choose to retain only

the smallest from this set. If we exclude all test targets, except

our edge targets, and retain only the smallest MinDist value,

from the data of Figure 8, we see the distribution shown

in Figure 9. This distribution is more pronounced between

MinDist values 6 and 10.

P
ro

ba
bi

lit
y

MinDist

Fig. 9. Probability Distribution of Our Edge Targets.

There are two sources of noise in our data of Figure 9. The

first is due to the presence of flaky test targets, and second

is an artifact of how TAP cuts milestones, i.e., because TAP

does not run each affected target at each CL, we have no

way to pinpoint the cause of a breakage or fix. To eliminate

the first noise source, we can filter flakes, ending up with a

less noisy distribution shown in Figure 10. This distribution is

much more focused at MinDist = 10. This shows that most of

our non-flaky edge test targets have MinDists between 5 and

10.
P

ro
ba

bi
lit

y

MinDist

Fig. 10. Distribution of Our Edge Targets Minus Flakes.

To eliminate our second noise source,

consider a test target that transitioned from

PASSED (P) to FAILED (F) as illustrated here:
P ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ... F

Any of these N responsible for failure

Any of the N changelists between the P and F may

have caused the breakage, which was eventually detected at

a milestone build. Hence, our edge test targets have extra

MinDist values that most likely have nothing to do with fixes

and breakages. We can eliminate this noise by considering

only those edge targets that have no AFFECTED outcomes

between PASSED and FAILED (also FAILED to PASSED),

i.e., we know for sure the culprit CL for a breakage and fix.

Examining only this subset of edge targets, 77% of the full set,

gives us the distribution shown in Figure 11, clearly contained

236238238

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

Minranks

P
ro

ba
bi

lit
y

MinDist
5 10 15

Fig. 11. Distribution for Edge Test Targets without AFFECTED.

within the MinDist boundary of 10.

Our above modeling of edge test targets and comparison

with the overall population of test targets gave us confidence

that we need not execute test targets beyond MinDist = 10. To

better quantify our savings in terms of resources, we ran two

simulations, running only test targets with MinDist ≤ 10 and

MinDist ≤ 6. We compared these with our entire dataset.

The results, in Figure 12 show that we executed only 61%

and 50% of test targets with MinDist=10 and MinDist=6,

respectively. Because AFFECTED test targets have a cumula-

tive effect on resources, the area under the curves is a better

indicator of the resources used. We see that we could save

42% and 55% resources if we executed only test targets within

MinDist=10 and MinDist=6, respectively. We also note that for

this simulation we did not miss a single breakage or fix.

All 1,853,231

Area under MinDist=6 = 45%

Area under MinDist=10 = 58%

A
ffe

ct
ed

 T
ar

ge
ts

 S
et

 S
iz

e

10010000 10013500 10017000 10020500 10024000
CL

MinDist=6; 932,803

MinDist=10; 1,133,612

Fig. 12. Simulating with MinDist = 6 and 10.

Going back to our hypothesis, we have shown that test

targets that are more than a distance of MinDist=10 do not

cause breakages (or fixes) in Google’s code in our dataset.

B. Hypothesis 2: Frequently Modified Source Code Files are
More Often in Edge Changelists

We call a CL an edge changelist if a test target transitioned

from a previously known PASSED to FAILED (or FAILED to

PASSED) when executed at the CL. We hypothesize that code

that is modified very frequently is more likely to be in these

edge CLs. Because of the nature of our data, our granularity

for code is a source code file. In our dataset, we saw files being

modified as frequently as 42 times, and as little as once. We

also saw that a very small percentage of files modified only

once were in edge CLs, whereas 77% of the files modified

42 times were in edge CLs, which led us to hypothesize that

file modification frequency has an impact on how test targets

transition.

To examine this hypothesis, we define two terms:

fi = Number of files modified i times in edge CLs, and

Fi = Total number of files modified i times.

We plot P(File in Edge CL) = fi/Fi for i = 1 to 42, and show

the results in Figure 13. We see that P() consistently increases

with file modification frequency. For our project, this means

that when a developer submits code that has been changed

a large number of times in the past, TAP should schedule it

as soon as possible (perhaps without waiting for a milestone)

so that the impact of the change can be evaluated quickly.

Moreover, for the developer, we can issue an alert in the IDE

that “You are modifying a file that was modified 41 times in
the past. The probability that you will cause a breakage is
75%.”

P
 (F

ile
 in

 E
dg

e
C

L)

Number of Times File in CL

1

0.75

0.5

0.25

0
1 11 21 31 41

Fig. 13. File modification frequency impact on edge CLs.

C. Hypothesis 3: Certain Types of Source Code is More Often
in Edge Changelists.

Some of our programming languages such as Java, have a

rich set of tools (e.g., static analysis tools) and type-checking

that help to reduce certain types of breakages. Moreover,

new developers, fresh out of college, are better prepared in

certain programming languages, e.g., Java these days. It is

only natural to believe that that bugs and breakages may

vary across languages. In our project, we capture differences

between languages by using the file extensions (.java or .cpp)

and examine whether certain file extensions are more often in

edge changelists.

We define two terms:

ti = Number of type i files in edge CLs,

237239239

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

Ti = Total number of type i files in dataset.
We plot, for each file type i two values, ti and Ti − ti and

normalize each with Ti. The resulting column chart is shown

in Figure 14. We have sorted the columns so that the gray

part (ti) shows up in decreasing order of magnitude. The plot

shows that file type .hpp (leftmost column) was the most prone

to breakages. In fact 80% of .hpp files appeared in edge CLs.

A number of file types (13 of the right-most columns) had no

impact on breakages in our dataset. We further superimpose a

curve showing the frequency of occurrence of these file types.

We see that java files were the most commonly modified types

and were 40% likely to cause breakages. These turned out

to be better than cc files, which were 60% likely to cause

breakages.
These results were interesting in and of themselves (e.g.,

C++ is more prone to breakages than Java) but for the purpose

of our project, file types gave us a clear signal of how to

focus our testing resources. Moreover, C++ (extension .cc)

developers at Google need to be aware that they are more

likely to cause breakages than their java counterparts. For

the developer, we can issue an alert in the IDE (or a code

review tool) that “You are modifying a file type that is known
to cause XX% of Google’s breakages. We recommend a more
thorough code review and running a static analysis tool to
detect possible problems.”

D. Hypothesis 4: Certain Changelist Authors Cause More
Breakages than Others

CLs at Google are authored by both human developers and

tools. Each tool is responsible for generating some part of

Google code and automatically adding the generated code via a

code commit. We expected these tools to be well-tested so they

do not cause breakages when integrated with overall Google

code. We further hypothesized that certain human developers

are more prone to cause breakages either because of their

coding practices or the type/complexity of code they develop.
Our results are shown in Table III. The first 3 entries in the

table are anonymized human developers; the remaining are

tools. We see that user userabz (IDs have been anonymized)

made a total of 182 commits of which 59 (31.4%) caused

breakages, an unusually large percentage. Tool product1-

release made 42 commits of which 39 caused breakages. This

was a surprising but valuable result because product1 releases

are very carefully tested.
Examining CL authors provided us with valuable insights

for our project. TAP could take extra care when scheduling

CLs for certain authors, such as product1-release, perhaps

during off-peak hours. For the developer, we can issue an alert

in the IDE that “Your recent development history shows a code
breakage rate of XX%, which is higher than the average YY%.
We recommend a more thorough pre-submit testing cycle,
followed by a global presubmit, before committing the code.”

E. Hypothesis 5: Code Modified by Multiple Developers Is
More Prone to Breakages

Many parts of Google code are modified by multiple devel-

opers. We hypothesize that such code can become fragile and

TABLE III
CHANGELIST AUTHOR’S IMPACT ON BREAKAGES.

USER ID Total Commits Breakages
userabz 182 59 (31.4%)
userabc 1,382 196 (14.2%)
userxyz 1,564 214 (13.7%)

product1-release 42 39 (92.9%)
product2-dev 319 68 (21.3%)

product3-rotation 302 47 (15.6%)
product4-releaser 263 40 (15.2%)
product5-releaser 442 63 (14.3%)
product6-releaser 526 66 (12.5%)
product7-releaser 784 87 (11.1%)
product8-releaser 2,254 226 (10%)

more prone to breakages. This would happen if the developers

don’t understand each other’s changes very well.

To examine this hypothesis, we collected the entire set of

files with their authors in our dataset. We then computed the

frequency with which these files were modified by multiple

authors. Our results are shown as a line plot in Figure 15,

normalized for the number of times the files are changed.

We see multiple lines in the plot, one for each count of the

number of times a file was modified. The x-axis shows the

number of authors. The plot shows that breakages drop when

a file is modified by 2 authors compared to a single author.

This may be because two authors working on the same file

are able to review one anothers code, and catch each other’s

faults. However, breakages go up significantly when 3 or more

authors are involved in modifying a file. We guess that this

is due to breakdown in communication when large number of

developers are working on the same code.

For our project, this result provides at least two concrete

action items. First, TAP should use “variety of authors” and

“code change frequency” together to better schedule test

targets. For the developer, we can issue an alert in the IDE,

e.g., “You are 97% likely to cause a breakage because you are
editing a Java source file modified by 15 other developers in
the last 30 days.”

V. RELATED WORK

In this project, we are aiming to do two things. First, we

want to reduce test workload by not frequently re-running tests

unlikely to fail. Second, we want to use test results to inform

code development.

Our first goal is somewhat related to test selec-

tion/prioritization. At one extreme of test selection are safe
techniques that select all tests that have any chance of failure.

These rely on knowing a mapping between code elements

(statements, functions/methods, classes/files) and tests. If a

modification is made to the code element, then all affected tests

are re-run. Rothermel et al. propose a regression test selection

technique that uses control flow graphs (CFG) of programs to

select tests that execute modified code [18]. Legunsen et al.

evaluate static analysis techniques to select tests that may be

affected by code change [19].

Different granularities of program elements have also been

studied. Rothermel et al. show that fine-granularity techniques

238240240

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

File Types (by extensions)

Fr
eq

ue
nc

y
(in

 1
00

0’
s)

Fig. 14. File Types’ Impact on Edge CLs.

Fr
ac

tio
n

of
 B

re
ak

ag
es

Number of Unique Users

1

0.75

0.5

0.25

0
3 6 9 12 15

Fig. 15. Multiple CL Authors Impact on Breakages.

(statement-level) typically outperform coarse-granularity tech-

niques (function-level) only by a relatively small margin

overall. Some recent studies show that better results can be

achieved by selecting tests at a coarser (class-level) compared

to a finer (method-level) granularity [17][19].

Because our level of granularity is at the file level, and

we use reverse dependencies to obtain implicit on-demand

mapping between code (at the file level) and test targets, our

work is also related to event-driven systems that use explicit

dependencies between elements (in this case, events) for test

selection and prioritization. Bryce and Memon proposed a

technique to prioritize tests based on t-way interaction cov-

erage of events [20].

Researchers have also used other, non-code elements such as

requirements. Srikanth et al. presented a value-driven approach

to system-level test case prioritization which prioritizes system

test cases based upon four factors: requirements volatility,

customer priority, implementation complexity, and fault prone-

ness of the requirements [8]. Arafeen et al. investigated a

technique which clusters test cases based on requirements, and

then utilize code element metrics to further prioritize tests for

different clusters [21].

Different algorithms are studied in test prioritization and

selection. Li and Harman et al. presents a set of search algo-

rithms for test case prioritization, including greedy, additional

greedy, 2-Optimal, hill-climbing and genetic algorithms [22].

Other works use machine learning techniques to assist test

selection. Chen et al. used semi-supervised K-Means to cluster

test cases and then pick a small subset of tests from each

cluster to approximate the fault detection ability of the original

test suite [23]. Arafeen et al. proposed a requirement-based

clustering technique for test prioritization [21].

There are also some rule-based techniques. For example,

Weyuker et al. showed that files that were recently modified are

likely to have faults [24]. Graves et al. presented a study that

predicates fault incidence using software change history. Their

study showed some interesting findings such as large number

of past faults may indicate a module has been rigorously tested

and thus will have fewer future faults; and the number of

changes to a module tend to be proportional to its expected

number of faults. And other studied measures include the

age of code and weighted time stamp which assign large and

recent changes with big fault potential [25]. Zimmermann and

Nagappan investigate how dependencies correlate with and

predict defects for binaries in Windows Server 2003 [26].

Hindle et al. [27] performed a case study that includes the

manual classification of large commits. They show that large

commits tend to be perfective while small commits are more

likely to be corrective.

Second, some existing techniques use test results to inform

code development. Anvik et al. presented a technique which

uses text categorization, a machine learning technique, to learn

the kinds of reports each developer resolves, based on which

new coming bug reports will be assigned to a small number

of candidate developers [28]. Their technique attempts to find

a developer who can, instead of who should, fix a bug.

VI. CONCLUSIONS & FUTURE DIRECTIONS

We described results of a project performed in TAP, a group

at Google responsible for continuous integration and testing

of most of Google’s codebase. The overarching goal of this

project was to develop and empirically evaluate mechanisms

that can aid developers by providing them with quick feedback

from test runs as well as situational data-driven guidelines re-

garding the impact of their latest changes on code quality. We

empirically studied several relationships between developers,

239241241

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

their code, test targets, frequency of code commits and test

target execution, and code type, and found novel correlations.

Our specific results and correlations are valid within the

context of post-submit test data recorded by TAP, a group

that deals with company-wide CI. We recognize that the exact

relationships that we have found (e.g., MinDist = 10) may not

generalize to other companies or even groups across Google

for a number of reasons. For example, groups/companies may

not use the same test criteria, or follow the same code-review,

pre-submit, global presubmit, and post-submit stages of quality

control. They may not have deep Google-like dependencies

in their relatively-smaller codebases. However, we do believe

that our results are generalizable to the extent that similar

correlations likely exist in other companies (we know this

from verbal discussions with folks at other companies, e.g.,

certain developers/languages are more error prone than others,

frequently modified code is more likely to cause breakages),

and hence our results would be of general interest to the

software testing community.

This research has raised many questions that require more

formal in-depth studies. Our hypotheses are supported by our

preliminary data but not yet fully tested. The experimental

cycle of each hypothesis needs to be exercised to present

validated results that are useful to the broader community.

Moreover, we have shown correlations between our variables

of study but have not fully explained causation. Finally, our

hypotheses are drawn using a mix of expert domain knowledge

and observed data; these need to be identified and separated.

Addressing all these limitations requires much work. In the

short and medium terms, we plan to conduct a more fine-

grained project-level analysis to clarify some of the relation-

ships we have discovered. We believe that such an analysis

could lead to preliminary explanation of the insights that come

from the data. Each of these insights have value on their own

and could be presented in a separate research paper. Indeed,

we ask the broader software testing research community to

contact us and help us pursue some of this research.

ACKNOWLEDGMENTS

The authors would like to thank Jan Bakus, Ot Ten Thije,

John Roane, Phil Stahlfled, Murat Ozturk, Jeff Listfield, Celal

Ziftci, and John Penix for their support during this work.

REFERENCES

[1] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for improving
regression testing in continuous integration development environments,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 235–245.

[2] J. Micco, “Tools for continuous integration at google scale,” Google
Tech Talk, Google Inc, 2012.

[3] R. Potvin and J. Levenberg, “Why google stores billions of lines of code
in a single repository,” Communications of the ACM, vol. 59, no. 7, pp.
78–87, 2016.

[4] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-aware regression
testing: an empirical study of sampling and prioritization,” in Pro-
ceedings of the 2008 international symposium on Software testing and
analysis. ACM, 2008, pp. 75–86.

[5] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case prioriti-
zation: A family of empirical studies,” IEEE transactions on software
engineering, vol. 28, no. 2, pp. 159–182, 2002.

[6] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing
test cases for regression testing,” IEEE Transactions on software engi-
neering, vol. 27, no. 10, pp. 929–948, 2001.

[7] L. C. Briand, J. Wüst, S. V. Ikonomovski, and H. Lounis, “Investigating
quality factors in object-oriented designs: an industrial case study,” in
Proceedings of the 21st international conference on Software engineer-
ing. ACM, 1999, pp. 345–354.

[8] H. Srikanth, L. Williams, and J. Osborne, “System test case prioritization
of new and regression test cases,” in 2005 International Symposium on
Empirical Software Engineering, 2005. IEEE, 2005, pp. 10–pp.

[9] “Flakiness dashboard howto,” http://goo.gl/JRZ1J8, 2016-10-05.
[10] “Android flakytest annotation,” http://goo.gl/e8PILv, 2016-10-05.
[11] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis of

flaky tests,” in Proceedings of the 22nd ACM International Symposium
on Foundations of Software Engineering. ACM, 2014, pp. 643–653.

[12] A. M. Memon and M. B. Cohen, “Automated testing of gui applications:
Models, tools, and controlling flakiness,” in Proceedings of the 2013
International Conference on Software Engineering, ser. ICSE ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 1479–1480. [Online].
Available: http://dl.acm.org/citation.cfm?id=2486788.2487046

[13] Z. Gao, Y. Liang, M. B. Cohen, A. M. Memon, and Z. Wang, “Making
system user interactive tests repeatable: When and what should we
control?” in 2015 IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 1. IEEE, 2015, pp. 55–65.

[14] D. Saff and M. D. Ernst, “Reducing wasted development time via
continuous testing,” in Software Reliability Engineering, 2003. ISSRE
2003. 14th International Symposium on. IEEE, 2003, pp. 281–292.

[15] J. Penix, “Large-scale test automation in the cloud (invited industrial
talk),” in 2012 34th International Conference on Software Engineering
(ICSE), June 2012, pp. 1122–1122.

[16] “Bazel,” https://www.bazel.io/, 2016-10-05.
[17] M. Gligoric, L. Eloussi, and D. Marinov, “Practical regression test

selection with dynamic file dependencies,” in Proceedings of the 2015
International Symposium on Software Testing and Analysis. ACM,
2015, pp. 211–222.

[18] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 6, no. 2, pp. 173–210, 1997.

[19] O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov, “An
extensive study of static regression test selection in modern software
evolution,” in Proceedings of the 2016 11th Joint Meeting on Founda-
tions of Software Engineering. ACM, 2016.

[20] R. C. Bryce and A. M. Memon, “Test suite prioritization by interaction
coverage,” in Workshop on Domain specific approaches to software test
automation: in conjunction with the 6th ESEC/FSE joint meeting. ACM,
2007, pp. 1–7.

[21] M. J. Arafeen and H. Do, “Test case prioritization using requirements-
based clustering,” in 2013 IEEE Sixth International Conference on
Software Testing, Verification and Validation. IEEE, 2013, pp. 312–321.

[22] Z. Li, M. Harman, and R. M. Hierons, “Search algorithms for regression
test case prioritization,” IEEE Transactions on software engineering,
vol. 33, no. 4, pp. 225–237, 2007.

[23] S. Chen, Z. Chen, Z. Zhao, B. Xu, and Y. Feng, “Using semi-supervised
clustering to improve regression test selection techniques,” in 2011
Fourth IEEE International Conference on Software Testing, Verification
and Validation. IEEE, 2011, pp. 1–10.

[24] T. J. Ostrand, E. J. Weyuker, and R. M. Bell, “Predicting the location
and number of faults in large software systems,” IEEE Transactions on
Software Engineering, vol. 31, no. 4, pp. 340–355, 2005.

[25] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting fault
incidence using software change history,” IEEE Transactions on software
engineering, vol. 26, no. 7, pp. 653–661, 2000.

[26] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proceedings of the 30th International
Conference on Software Engineering, ser. ICSE ’08. ACM, 2008, pp.
531–540.

[27] A. Hindle, D. M. German, and R. Holt, “What do large commits tell
us?: a taxonomical study of large commits,” in Proceedings of the
2008 international working conference on Mining software repositories.
ACM, 2008, pp. 99–108.

[28] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix this bug?” in
Proceedings of the 28th international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

240242242

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on August 30,2023 at 13:29:33 UTC from IEEE Xplore. Restrictions apply.

