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ABSTRACT

Deep Learning (DL) solutions are increasingly adopted, but how

to test them remains a major open research problem. Existing and

new testing techniques have been proposed for and adapted to DL

systems, including mutation testing. However, no approach has

investigated the possibility to simulate the effects of real DL faults

by means of mutation operators.

We have defined 35 DLmutation operators relying on 3 empirical

studies about real faults in DL systems. We followed a systematic

process to extract the mutation operators from the existing fault

taxonomies, with a formal phase of conflict resolution in case of

disagreement. We have implemented 24 of these DL mutation oper-

ators into DeepCrime, the first source-level pre-training mutation

tool based on real DL faults. We have assessed our mutation op-

erators to understand their characteristics: whether they produce

interesting, i.e., killable but not trivial, mutations. Then, we have

compared the sensitivity of our tool to the changes in the quality

of test data with that of DeepMutation++, an existing post-training

DL mutation tool.
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· Software and its engineering → Software verification and
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1 INTRODUCTION

The recent success of Deep Learning (DL) in performing complex,

human-competitive tasks, such as artificial vision, speech recogni-

tion and natural language processing, are making DL based compo-

nents an integral part of advanced software systems. When such
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systems involve life, business or ethics critical activities, the quality

of the DL components they use becomes a major concern.

Traditional test adequacy criteria (e.g., branch coverage) are

not effective with DL models, whose behaviour is determined by

factors such as the training data, themodel architecture, the training

hyper-parameters, and only marginally by the source code, which

consists typically of a plain sequence of invocations to the APIs of

the DL framework in use. Hence, researchers have proposed several

novel test adequacy criteria tailored for DL systems. These include

neuron coverage [28, 31], surprise adequacy [24] and mutation

adequacy [29].

Mutation testing relies on the assumption that test suites achiev-

ing a high mutation score are also very likely to be able to expose

the faults that affect the original, un-mutated program, while test

suites achieving a low mutation score need to be improved. This

assumption is more likely to hold if mutation operators being used

are based on real faults, rather than on arbitrary changes to the

program under test. Moreover, mutation testing is being applied to

various tasks for DL systems such as program repair [34], genera-

tion of optimal oracles for autonomous vehicles [17], detection of

adversarial inputs [35], generation of adversarial code snippets for

deep neural networks of source code embedding [32], prioritisation

of test inputs for the labelling [36]. Availability of a mutation tool

that can inject changes imitating real faults would be extremely

useful also for these approaches. There exists a number of DL spe-

cific mutation operators proposed in the literature [29, 33] and 8

of them are implemented in the tool DeepMutation++ [18], which

manipulates a pre-trained model to produce its mutant versions.

However, none of the existing DL mutation operators, including

those in DeepMutation++, are based on real faults that affect DL

systems.

We have analysed 3 classifications [20, 21, 40] of real DL faults,

as well as the associated replication packages, to extract a set of mu-

tation operators based on real faults. We have followed a systematic

procedure, in which different types of artefacts (e.g., StackOverflow

discussions, GitHub issues and interviews) have been inspected by

the two assessors, who agreed on the final list of extracted opera-

tors via consensus meetings. 24 of the 35 resulting operators are

implemented in DeepCrime, the first open source DL mutation tool

based on real faults, which operates at the Python-code level.

We have evaluated the properties of DeepCrime’s mutation

operators in an empirical study on 5 diverse DL systems. One goal

of the experimentation was to understand if our operators enjoy

some desirable properties, such as being killable and non trivial. We

also investigated whether some mutation operators dominate some

of the others, because of a subsumption relation between them. The

dominating operators are of course those that deserve the highest
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priority when conducting DL mutation testing in time constrained

conditions. Another goal was to assess the discriminative power of

our operators in comparison to those available in DeepMutation++.

In fact, the core requirement for a test adequacy criterion is that it

reacts to a quality change of the test set, by recognising those test

sets that are weak and need to be improved. Results confirm that

DeepCrime produces mostly killable and non trivial mutants, that

it can discriminate very effectively a weak from a strong test set

and that it significantly outperforms the DeepMutation++ tool on

these grounds. Our main contributions to the state of the art in DL

testing are:

• A set of 35 DL mutation operators systematically extracted

from 3 existing studies dedicated to DL faults;

• DeepCrime, the first DL mutation tool based on real faults,

available as open source code;

• An empirical assessment of the properties of DeepCrime’s

operators and of their discriminative power, in comparison

with DeepMutation++.

2 DEFINITIONS

2.1 Mutation Killing

The output 𝑦 = 𝑁 (𝑥) of a neural network 𝑁 for an input 𝑥 can

be viewed as a particular instance of a random variable 𝑌 that

represents the distribution of output values obtained from 𝑁 with

input 𝑥 when taking into account the randomness associated with

the training process (e.g., the randomness of initial weights, the

possible randomness of the optimisers used to learn the weights

from the training set, the randomness of network layers such as

the dropout layer, etc.). Techniques that apply Bayesian inference

to neural networks [15] aim precisely at estimating the probability

distribution of 𝑌 , rather than just computing a single realisation of

𝑦.

In traditional mutation analysis, a test input kills a mutant if it

gets a different output when executed against the original program

and against the mutant. In DL mutation analysis, a mutant 𝑀 of

a neural network 𝑁 could produce an output 𝑀 (𝑥) ≠ 𝑁 (𝑥) just

because of the randomness of the training process, not because the

mutant𝑀 is actually discriminated from 𝑁 by the input 𝑥 . In fact,

even the same neural network 𝑁 could produce different outputs

if trained multiple times (𝑁1 (𝑥) ≠ 𝑁2 (𝑥)). Hence, as proposed

originally by Jahangirova & Tonella [22], the notion of mutation

killing must necessarily be defined using a statistical comparison

between the distribution of the random variable 𝑌𝑁 that represents

the output of the original network 𝑁 and the distribution of 𝑌𝑀
that represents the output of the mutant𝑀 .

The statistical notion of DLmutation killing [22] requires that the

training process is repeated 𝑛 times for both the original network

𝑁 = ⟨𝑁1, ..., 𝑁𝑛⟩ and its mutation𝑀 = ⟨𝑀1, ..., 𝑀𝑛⟩. The mutation

is considered killed if for a given test set TestS the difference between

the accuracies (or other output/quality metrics) of the original and

mutated models, respectively 𝐴𝑁 (TestS) = ⟨𝐴𝑁1
, . . . , 𝐴𝑁𝑛

⟩ and

𝐴𝑀 (TestS) = ⟨𝐴𝑀1
, . . . , 𝐴𝑀𝑛

⟩, is statistically significant with non-

negligible and non-small effect size. The predicate isKilled is defined

as:
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Figure 1: Mutation Testing of DL Systems

isKilled(𝑁,𝑀, TestS) =





true if effectSize(𝐴𝑁 (TestS), 𝐴𝑀 (TestS)) ≥ 𝛽

and p_value(𝐴𝑁 (TestS), 𝐴𝑀 (TestS)) < 𝛼

false otherwise

We have used generalised linear model (GLM) [30] for the calcu-

lation of statistical significance (with 𝛼 = 0.05), Cohen’s 𝑑 [23] for

the effect size (with 𝛽 = 0.5) and 𝑛 = 20 training runs of both origi-

nal and mutated models in our experiments. The Figure 1 shows

the workflow of the application of the mutation testing technique

to a DL system.

2.2 Mutation Score

Let 𝑀𝑂 (𝑝1, . . . , 𝑝𝑘 ) be a mutation operator (e.g., łdelete training

dataž) with 𝑘 parameters (e.g., łdelete percentagež) the values of

which belong to a configuration space 𝐶 = 𝐶1 × . . . ×𝐶𝑘 (e.g., 0%

to 99% for łdelete percentagež). When applied to a subject study

with concrete values assigned to its parameters, an instance of

the mutation operator for the chosen parameter configuration is

produced (e.g., łdelete 50% of training dataž). Let TrainS denote

the training set that is used to train a subject system 𝑛 times. Let

𝐾 (MO, TestS) ⊆ 𝐶 and 𝐾 (MO, TrainS) ⊆ 𝐶 denote the subspaces of

𝐶 containing the configurations of MO that are killed by TestS and

TrainS, respectively.

Definition 2.1 (Mutation Score). Given a training set TrainS,

the mutation score𝑀𝑆 (𝑀𝑂, TestS) of a test set TestS for mutation op-

erator𝑀𝑂 is defined as the proportion of mutation operator instances

that are killed by both training and test set over all those that are
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killed by the train set:

𝑀𝑆 (𝑀𝑂,𝑇𝑒𝑠𝑡𝑆) =
|𝐾 (𝑀𝑂,𝑇𝑒𝑠𝑡𝑆) ∩ 𝐾 (𝑀𝑂,𝑇𝑟𝑎𝑖𝑛𝑆)) |

|𝐾 (𝑀𝑂,𝑇𝑟𝑎𝑖𝑛𝑆) |

For example, for the mutation operator łdelete training dataž the

training set might be able to kill all configurations where the delete

percentage is greater than 5%, while the smallest delete percentage

might be 25% for the test set. The mutation score will be computed

as:𝑀𝑆 = | [0.25 : 0.99] |/| [0.05 : 0.99] | = 0.74 / 0.94 = 0.79. The over-

all mutation score of TestS is computed as the average of mutation

scores across all operators.

We use the training data as a reference for the mutation killing

capability of a given test set because the training data contains

the set of inputs to which the model is mostly sensitive, since the

model was trained on them. A test set TestS that kills the same

configurations killed by the training set TrainS is as sensitive to

mutations as the training data and it achieves a mutation score

equal to 1.

2.3 Properties of Mutation Operators

We aim for mutation operators that are killable (i.e., likely non-

equivalent) and non-trivial (i.e., not killable by any arbitrary input).

Definition 2.2 (Killable Mutation Operator). We consider

a mutation operator killable if there exists at least one configuration

that is killed by the training data (i.e., by the data that is expected to

have the highest killing capability).

To formalise the notion of trivial mutation operator, we first

introduce the concept of a contributing input for a trained model

and mutant pair.

Definition 2.3 (Contributing Input for Trained Model and

Mutant). Given a trained model 𝑁𝑖 and a trained mutant 𝑀𝑖 , an

input 𝑥 with the correct value of prediction 𝑦, contributes to killing

the mutant 𝑀𝑖 if the original trained model 𝑁𝑖 produces a correct

output 𝑁𝑖 (𝑥) for the input 𝑥 , while the mutated model produces a

different output: 𝑁𝑖 (𝑥) = 𝑦 and𝑀𝑖 (𝑥) ≠ 𝑦 if the output is categorical

or ∥𝑁𝑖 (𝑥) −𝑦∥ < 𝛿 and ∥𝑀𝑖 (𝑥) −𝑦∥ >= 𝛿 if the output is continuous,

where 𝛿 is a predefined threshold.

Across the 𝑛 trainings of the original model 𝑁 and its mutant𝑀 ,

an input 𝑥 might be a contributing one only for some, but not for

all pairs of the original and mutated models. Hence, we define the

contributing input property as a statistical one:

Definition 2.4 (Killing Probability). Given a model 𝑁 and a

mutant𝑀 , the probability 𝑝𝐾 that an input 𝑥 contributes to killing

the mutant is the probability that random variables 𝑌𝑁 = 𝑁 (𝑥) and

𝑌𝑀 = 𝑀 (𝑥) differ: 𝑝𝐾 = 𝑃 (𝑌𝑁 ≠ 𝑌𝑀 ).

The killing probability 𝑝𝐾 can be estimated as:

𝑝𝐾 (𝑥) =
|{𝑖 ∈ [1 :𝑛] : diff(𝑀𝑖 (𝑥), 𝑁𝑖 (𝑥))}|

𝑛
,

where diff(𝑀𝑖 (𝑥), 𝑁𝑖 (𝑥)) means that the input 𝑥 is a contributing

one according to the Definition 2.3.

Since the value 𝑝𝐾 (𝑥) is estimated from a sample of size 𝑛, it is

affected by an estimation error that can be measured by Wilson’s

method [37]. For a binomial variable (in our case, deciding whether

the mutant is killed or not), Wilson’s method reports its confidence

interval, i.e., an interval [𝑙 (𝑝𝐾 (𝑥)) : ℎ(𝑝𝐾 (𝑥))] that contains the

true value of 𝑝𝐾 with some probability (which we set to 0.9). When

comparing two killing probabilities 𝑝𝐾 1 and 𝑝𝐾 2 for a given input

𝑥 , we can reliably say that 𝑝𝐾 1 (𝑥) < 𝑝𝐾 2 (𝑥) (or 𝑝𝐾 1 (𝑥) > 𝑝𝐾 2 (𝑥))

only if the associated Wilson’s confidence intervals [𝑙1 :ℎ1], [𝑙2 :ℎ2]

are disjoint and ℎ1 < 𝑙2 (or 𝑙1 > ℎ2, to state that 𝑝𝐾 1 (𝑥) > 𝑝𝐾 2 (𝑥)).

As inputs from a test set are not just killing or non-killing inputs,

but rather have a degree (probability) of contribution to killing,

instead of the classical set theory we apply fuzzy set theory [39] to

our analysis.

Definition 2.5 (Fuzzy Killing Set). Given a set of inputs 𝑋

and a mutation operator 𝑀𝑂 , the fuzzy killing set of the latter is

defined as the fuzzy set ⟨𝑋, 𝜇⟩, whose membership function 𝜇 con-

sists of the contributing input probability of each input: 𝜇 (𝑥) .𝑝 =

𝑝𝐾 (𝑥),∀𝑥 ∈ 𝑋 , as well as the bounds of its confidence interval

𝜇 (𝑥) .𝑙 = 𝑙 (𝑝𝐾 (𝑥)), 𝜇 (𝑥) .ℎ = ℎ(𝑝𝐾 (𝑥)).

Definition 2.6 (TrivialMutant). Amutant is considered trivial

if it has a high triviality score, measured as the expected number

of contributing inputs over the total number of inputs in the training

set: E[|⟨TrainS, 𝜇⟩|]/|TrainS| ≥ 𝛾 .

In our experiments we used 𝛾 = 0.90. The expected number of

contributing inputs is computed as
∑
𝑥 ∈TrainS 𝜇 (𝑥) .𝑝 .

2.4 Redundancy between Mutants

In traditional mutation analysis, a mutant𝑀1 is said to subsume (or

to dominate) another mutant𝑀2 (which is hence redundant) if the

inputs that kill𝑀1 are also capable of killing𝑀2: 𝐾 (𝑀1) ⊆ 𝐾 (𝑀2),

where𝐾 gives the killing inputs [25]. In fact, the dominating mutant

𝑀1 is enough to select inputs that kill the subsumed mutant 𝑀2.

The problem of redundant mutants is well-known in mutation

testing for traditional systems [16, 25, 26]. Such mutants inflate

the mutation score and make it hard to interpret as they do not

contribute to the selection of the killing inputs. Moreover, they

increase the overall execution time of mutation analysis.

For DL systems, the killing power of a test input is expressed as

a probability 𝑝𝐾 (𝑥) associated with a confidence interval [𝑙 :ℎ]. We

therefore adapt the existing definition of redundancy to DL based

on the fuzzy killing set of mutation operators.

Definition 2.7 (Subsuming Mutant). Given a set of inputs 𝑋 ,

a mutant𝑀1 subsumes another mutant𝑀2 if the fuzzy subset con-

dition holds between their respective fuzzy killing sets: 𝑝𝑆 (⟨𝑋, 𝜇1⟩ ⊆

⟨𝑋, 𝜇2⟩).

The subsumption probability 𝑝𝑆 is estimated only on non inter-

secting confidence intervals:

𝑝𝑆 =
|{𝑥 : 𝜇1 (𝑥) .ℎ < 𝜇2 (𝑥).𝑙}|

|{𝑥 : 𝜇1 (𝑥) .ℎ < 𝜇2 (𝑥).𝑙 ∨ 𝜇1 (𝑥) .𝑙 > 𝜇2 (𝑥).ℎ}|

To ensure that this does not leave us with a too small set of inputs,

that cannot provide conclusive results, we calculate Wilson’s confi-

dence interval of the subsumption probability 𝑝𝑆 itself and deem

our estimate of 𝑝𝑆 as reliable only if its error rate (half the size of

the confidence interval) is small enough (we set a threshold to 0.05).
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3 MUTATION OPERATORS

3.1 Methodology

There are three large scale studies that have investigated real faults

in DL systems [20, 21, 40]. To define DL-specific mutation operators

based on real faults, two of the authors of the present paper per-

formed ameticulous inspection of the replication packages available

for these 3 publications.

We have started our analysis from the work by Humbatova and

Jahangirova et al. [20] as it presents the most comprehensive clas-

sification available in the literature. We have studied all of the 92

unique fault types presented in this taxonomy through the analysis

of the corresponding issues, available in the replication package of

the study [19]. We have organised the extraction of mutation oper-

ators into two stages. First, the issues contributing to the taxonomy

that originated from StackOverflow (SO) and GitHub were equally

divided between two of the authors (one has analysed 74 issues and

another 75). They separately studied the contents of the SO posts

and GitHub issues to understand the nature of the faults and filter

out those that inevitably lead to a crash. We excluded faults causing

crashes as the mutation operators based on them would produce

mutants that are easily killed and do not provide any information

about the quality of the test set. We then analysed the remaining

issues and for each produced a short text description that captured

the essence of a fault and proposed a mutation operator that mimics

it. The cases where either of the authors was not confident about

the proposed operator were discussed and resolved.

Initially, the authors agreed on the proposed mutation operators

for 42 out of 49 tags (86% of cases). For 5 tags one of the authors

proposed a mutation operator, while the other did not believe that

the interview tag describes a fault that can be mimicked with a

mutation operator. For the remaining 2 tags the proposed operators

varied very slightly (for example, "delete layer" vs. "delete dropout

layer"). All of these disagreements were resolved in a consensus

meeting.

We then proceeded with the analysis of two remaining works to

study the possibility to propose any additional mutation operators

w.r.t. the ones extracted from the taxonomy by Humbatova and

Jahangirova et al. [20].

For what concerns the dataset by Islam et al. [21], we carefully

studied bug types, root causes and effects reported for each bug.

We excluded generic programming issues, non-DL-specific issues

and issues pointing to incorrect documentation of frameworks

and libraries. We filtered out all of the bug reports that lead to a

crash and divided the remaining issues between the two authors

for a deeper analysis. As opposed to the first study, this dataset

contained several general ‘how to’ questions and unresolved issues.

After excluding such instances, we processed the faults relevant for

our purposes and introduced 5 additional mutation operators.

The dataset by Zhang et al. [40], also built on issues collected

from GitHub and SO, is organised as a set of reproducible bugs,

consisting of two versions of the same DL program: the correct

and the buggy one. For the bugs that were collected from SO we

analysed corresponding SO posts and related discussions. A closer

inspection revealed that some of these issues contained unresolved

issues and ‘how to’ questions. For the bugs reproduced from GitHub

commits and issues, we manually inspected differences the in code

using a publicly available tool for visual comparison and merge of

text files [1].

As a result, we extracted 35 unique mutation operators with 27 of

them obtained from the taxonomy by Humbatova and Jahangirova

et al. [20], 5 from the work by Islam et al. [21] and 3 from the study

of Zhang et al. [40].

3.2 List of Mutation Operators

In this section we present the extracted mutation operators, which

are shown in Tables 1 (implemented in DeepCrime) and 2 (not

yet implemented), where they are grouped by area of application

(Group). The ID of each operator consists of the first letter that

identifies the group (e.g., T = łTraining Dataž) followed by two

letters that identify the operator (e.g., CL = łChange Labelsž).

We have not implemented a portion of the proposed operators be-

cause their application is tricky as they trigger a cascade of changes

to neural networks’ structure (e.g., operator that removes/adds a

layer). The usage of such operators might be limited depending on

the structure of the network under test as some of the generated

mutants might be causing crashes, which is not particularly useful

for themutation testing. Our results show that already implemented

operators are enough to outperform the existing, DL-specific mu-

tation testing tools, and the rest will be part of future work. Due

to the space limitations, we do not include the descriptions for

non-implemented operators, but provide them in our replication

package [3].

3.2.1 Training Data Operators. Training data operators manipulate

the training set so as to mimic the issues possibly affecting the

dataset used to train a DL system. Some operators (e.g., TCL, TUD)

assume that the ground truth label 𝑦 of the training data is a class.

For regression problems, where the predicted value is a continuous

variable, and not a class, we perform binning to partition such

continuous values into a finite set of classes. In particular, by default

we create three classes [22]:𝑦 ≤ −𝜎𝑦 ;−𝜎𝑦 < 𝑦 < 𝜎𝑦 ;𝑦 ≥ 𝜎𝑦 , where

𝜎𝑦 is the standard deviation of the continuous label 𝑦.

Change Labels of Training Data. This mutation operator mimics

situations when wrong labels are provided for the training data. Its

parameters, label and percentage, represent the label to be replaced

by another, randomly selected label, and the percentage of data

with the given label to be changed. If the label parameter is not

provided by the user, DeepCrime chooses the label appearing most

frequently in the training set.

Remove Portion of Training Data. This mutation operator mimics

situations where there is not enough training data available. Its

parameter percentage indicates what percentage of the training data

should be removed. DeepCrime removes parts of training data from

each class in a proportional manner.

Unbalance Training Data. This mutation operators mimics the

case when the data available for training is unbalanced. To achieve

this, DeepCrime first calculates the average occurrence of each

class in the training data.DeepCrime then identifies the classes that

appear less frequently than the average and removes a percentage

of their data (specified via the percentage parameter), such that the

imbalance of the data becomes even more severe.

Make Output Classes Overlap. The mutation process starts by

identifying two dominating classes in the training dataset. This
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Table 1: Mutation operators implemented in DeepCrime. Column łSTž indicates the type of search used to find killable con-

figurations (B = binary; EL = exhaustive on list; EU = exhaustive on user provided values).)

Group Operator ID Mutation Parameters ST

Training Data

Change labels of training data TCL
label Ð a particular label to mutate
percentage Ð a percentage of data for the given label to mutate

-
B

Remove portion of training data TRD percentage Ð a percentage of training data to delete B

Unbalance training data TUD
percentage Ð a percentage of training data of underrepresented/selected labels to remove in order to un-
balance the training data

B

Add noise to training data TAN percentage Ð a percentage of training data to mutate B
Make output classes overlap TCO percentage Ð a percentage of training data to mutate B

Hyperparameters

Change batch size HBS new batch size Ð new batch size to be used to train the system under test EU
Decrease learning rate HLR new learning rate Ð new learning rate to be used to train the system under test B
Change number of epochs HNE new number of epochs Ð new number of epochs to be used to train the system under test B
Disable data batching HDB Ð -

Activation Function

Change activation function ACH
layer Ð the number of a layer with non-linear activation function to mutate
new activation function Ð new activation function for the layer under mutation

EL
EL

Remove activation function ARM layer Ð the number of a layer to mutate EL

Add activation function to layer AAL
layer Ð the number of a layer with linear activation function to mutate
new activation function Ð new activation function for the layer under mutation

EL
EL

Regularisation

Add weights regularisation RAW
layer Ð the number of a layer with no weights regularisation to mutate
new weights regularisation Ð the type of weights regularisation to be added for the layer under mutation

EL
EL

Change weights regularisation RCW
layer Ð the number of a layer with existing weights regularisation to mutate
new weights regularisation Ð the type of weights regularisation to be added for the layer under mutation

EL
EL

Remove weights regularisation RRW layer Ð the number of a layer with existing weights regularisation to mutate EL

Change dropout rate RCD
layer Ð the number of a dropout layer
new dropout rate Ð new dropout rate for the layer under mutation

EL
EU

Change patience parameter RCP new patience value Ð new value for the patience parameter of the EarlyStopping callback B

Weights

Change weights initialisation WCI
layer Ð the number of a layer to mutate
new weights initialisation Ð new type of kernel initialiser for the layer under mutation

EL
EL

Add bias to a layer WAB layer Ð the number of a layer with no bias to mutate EL
Remove bias from a layer WRB layer Ð the number of a layer with bias to mutate EL

Loss function Change loss function LCH new loss function Ð new loss function to be used to train the system under test EL

Optimisation Function
Change optimisation function OCH new optimisation function Ð new optimisation function to be used to train the system under test EL
Change gradient clipping OCG new gradient clipping Ð new value to be used for gradients clipping EU

Validation Remove validation set VRM Ð Ð

Table 2: Operators not yet implemented in DeepCrime

Group Operator ID

Training Data Remove data augmentation TRA

Change pooling amount LCP
Change the filter size of a convolutional layer LCF
Change the padding for a convolutional layer LCD
Change the stride for a convolutional layer LCS
Change the number of neurons in a layer LCN
Remove layer LRM
Add layer LAD
Change layer type LCT
Change output shape of a layer LCO

Layers

Change skip connections LCC

operator duplicates the amount of data specified by the parameter

percentage, taking it from the largest of the two classes, while using

the second class as the label. This recreates the situation where the

same or very similar training data elements have different labels

assigned to them.

Add Noise to Training Data. This mutation operator introduces

low quality training data by adding some noise to the original data.

The mutation operator uses two parameters: standard deviation per-

centage and percentage. DeepCrime takes the vector representation

of the training data and calculates the standard deviations of its

components. It multiplies these standard deviations by the value

of the parameter standard deviation percentage and obtains a new

value for the standard deviations. Using this value and a mean of

zero, DeepCrime generates (by default Gaussian) noise to be added

to the training input vectors. The parameter percentage identifies

what percentage of the inputs will be mutated.

3.2.2 Hyperparameters Operators. This group of operators simu-

lates the choice of suboptimal values for the hyperparameters.

Decrease Learning Rate. This mutation operator investigates the

consequences of a too small learning rate to train a model.

Change Number of Epochs. This operator changes the number of

epochs for which a model is trained.

Change Batch Size. This operator changes the number of samples

presented to a network for a single update of its weights.

Disable Data Batching. This operator mimics the setting where

no mini-batching is used to train the model under test.

3.2.3 Activation Function Operators. Mutation operators from this

group imitate wrong choices of activation function for specific

layers in a model.

Add Activation Function. This mutation operator operates on

layers with linear activation function and changes it to the one

specified by the user. If the user does not specify any preference,

the choice is random.

Remove Activation Function. This operator substitutes the activa-

tion function of a layer from non-linear one with linear.

Change Activation Function. This mutation operator is applicable

to layers with non-linear activation functions. The new activation

(also non-linear) can be provided by the user or is chosen randomly.

3.2.4 Regularisation Operators. The first three operators of this

group manipulate the penalties imposed on layers’ kernels, while

the last twomanipulate two regularisation hyperparameters, dropout

rate and patience.

Add Weights Regularisation. This operator adds a regulariser to

layers where no regularisation is used.

Remove Weights Regularisation. This operator removes the regu-

larisation of layers where it was originally used.
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Change Weights Regularisation. This mutation affects the layers

on which a kernel regulariser is applied, by changing the regulariser

to the one provided by the user or to another one, selected randomly.

Change Dropout Rate. This operator affects solely dropout layers

by changing their dropout rate parameter.

Change Patience Parameter for Early Stopping. Early stopping is

an effective way to prevent overfitting. Changing this parameter

can produce models that either overfit or even underfit training

data.

3.2.5 Weights Operators. Change Weights Initialisation. This muta-

tion operator changes the original kernel initialiser, where possible,

to a randomly chosen or user specified one.

Add Bias to a Layer. The bias vector contains an additional set

of weights, not connected to any input. This mutation operator

creates a bias vector if none is there.

Remove Bias from a Layer.On the contrary, this mutation removes

the bias vector of a layer.

3.2.6 Loss Function Operators. Change Loss Function. This muta-

tion operator changes the loss function used to train a model to the

one chosen by the user or selected randomly.

3.2.7 Optimisation Operators. There exist a number of optimisa-

tion algorithms that can be used while training a DNN model and

its choice can affect the performance of the model to a large extent.

Change Optimisation Function. This mutation operator changes

the optimiser originally selected to train the model to a new one.

Change Gradient Clipping. Gradient clipping is a technique to

avoid exploding gradients while training a DNN. It operates by

clipping or normalising the gradients to a predefined value. The

aim of this mutation operator is to alter this value.

3.2.8 Validation Operators. Remove Validation Set. This mutation

operator disables the usage of validation data during training.

3.3 Search for a Killable Configuration

As shown in Table 1, the majority of the mutation operators pro-

vided by DeepCrime have to be supplied some parameter values.

When a user does not provide any specific value for these param-

eters, instead of letting DeepCrime choose them randomly, it is

possible to activate an automated search for the killable configura-

tions of the mutation operator. The goal of the search procedure is

to find a configuration that is killable but not trivial to kill.

The type of search algorithm used to find a killable configuration

is determined by the domain of the mutation operator’s parameters,

which we classify into three groups: list-based, range-based and

user-specified. A parameter is list-based if its validity domain is

limited to a predefined list of values, such as the list of the layers

in the model under test or the list of loss/optimisation/activation

functions available in the DL framework (e.g., Keras). For the range-

based parameters, the validity domain is a continuous range of

values on which the mutation impact is increasingly higher or lower

depending on the operator. For example, the percentage parameter

of TRD can take a value in the range (0, 100), and the higher value

we pick, the stronger is the effect of the mutation. User-specified

parameters are the ones that do not fall into the previous two

categories and their values need to be specified in an ad-hoc manner.

For example, the batch size takes values in the range [1, length of

training data], but it does not satisfy the condition of an increasing

impact of the mutation throughout the range.

For the range-based parameters, DeepCrime uses binary search

to find a killable parameter configuration that is likely to be non

trivial. DeepCrime first checks if the operator is killable in the

most aggressive configuration, it then finds the middle point of the

range and checks the killability at this value of the parameter. If

so, it reapplies the search to the first half of the range. If not, it

moves to the second half instead. This process repeats recursively

until the size of the range becomes smaller than or equal to a

predefined precision 𝜖 , which gives the granularity of the smallest

change percentage to be performed. For the list-based and user-

specified parameters, DeepCrime implements an exhaustive search

for the killable configurations. Column "ST " (Search Type) in Table

1 indicates which search type has been used for each mutation

operator.

4 IMPLEMENTATION

DeepCrime was developed in Python 3.8 and is applicable to se-

quential and functional models implemented with Keras. The tool

is publicly available [14].

4.1 Injecting Mutations into Python Code

We use Python’s Abstract Syntax Tree (AST) module to parse and

seed faults into the code that builds and trains the DL model under

test. Specifically, while traversing the nodes of the parse tree, Deep-

Crime identifies the places in the code (target nodes) where each

mutation can be injected. For example,DeepCrime looks for calls to

specific model training APIs, such as fit or compile when apply-

ing the TRD mutation operator. By parsing such nodes’ arguments

and keywords, DeepCrime can extract the names or the values of

variables of interest, such as the constructed model, the training

data (to be manipulated by TRD) or various hyperparameters. Then,

the tool can proceed and seed the mutation by modifying the target

nodes’ parameters or by inserting new nodes representing calls

to functions provided by DeepCrime and implementing specific

mutation operators. For example, in order to change the number

of epochs (HNE operator), DeepCrime just replaces the old value

with the new one for the corresponding argument of the fit call.

When a mutation operator manipulates the layers of a model (e.g.,

ACH operator), it must be applied to the model before it is com-

piled. The corresponding mutation function must be called with

the model as a parameter just before the invocation to compile, so

as to return a new model containing the mutated layers, which can

now be compiled. After all the necessary modifications to inject the

mutations are performed, DeepCrime unparses the modified parse

tree back to Python code, hence finalising the creation of a mutant.

4.2 Configuration of DeepCrime

We constructed DeepCrime in a way that it provides its users with

high flexibility in configuring each mutation operator, while also

minimising the amount of manual work required for a basic usage.

DeepCrime imposes a couple of requirements on the source code

of the tested system: (1) the evaluation of the DL model should be

enclosed in a method called main(), (2) this method should return
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the evaluation score. If these requirements are not met by the origi-

nal code, it is usually quite straightforward to change the code and

make it compliant with them.

As the majority of mutation operators come with a set of con-

figurable parameters, we provide users with the functionality to

supply specific values for such parameters. An example would be

an explicit specification of the percentage of training data to be

deleted by the TRD operator or a specific optimisation function

to be used by the OCH operator. In case no preferences are speci-

fied, DeepCrime would apply a search method appropriate for the

parameter in question. Another user option is the selection of a

random configuration of the mutation operator.

To determine if a given mutant instance is killed, DeepCrime

uses the isKilled predicate introduced in Section 2, which requires

𝑛 retraining of the original model and of the mutant. By default, 𝑛

is set to 20, but users can change this value.

As output, DeepCrime produces a number of CSV reports, one

per applied mutation operator. For each generated mutant, the

report contains a record that captures whether the mutation was

killed and also reports the p-value and effect size obtained from

the statistical analysis. Additionally, there is a report that includes

the mutation score for each of the applied operators and the total

mutation score across all the operators.

5 EXPERIMENTAL RESULTS

We have performed a set of experiments to answer the following

research questions:

RQ1 [Interesting Mutation Operators]: What are the inter-

esting (killable, non trivial) mutation operators?

To investigate this research question we evaluate DeepCrime’s

mutation operators on the experimental subjects and identify which

of them have at least one killable configuration. We then determine

the contributing inputs for the killed configurations, and measure

the killability score and the average triviality score of the operator.

The Killability Score (KS) is defined as the ratio of configurations

killed by the training set. This is the denominator of the mutation

score MS (see Definition 2.1), divided by the size of all configu-

rations: 𝐾𝑆 = |𝐾 (𝑇𝑟𝑎𝑖𝑛𝑆) |/|𝐶 |. The Average Triviality Score (ATS)

is defined as the triviality score (measured according to Defini-

tion 2.6) averaged across all configurations sampled during binary

or exhaustive search.

For the training operators with continuous range parameters,

we performed binary search in the widest range available and set

the value of the precision parameter to 0.05. For TRD, the range

we used was (0, 0.99], as we can not remove the whole training

data, while for the remaining operators it was (0, 1.00]. For HNE

and RCP, the lower bound of search was always 1 and the upper

bound was the number of epochs or the patience in the DL model,

respectively. For HLR, the upper bound was the learning rate in

the DL model and the lower bound was set to a number very close

to 0. For these last three operators we set the precision as the size

of range divided by 10. For the mutation operators with list-based

parameters, we performed an exhaustive search. However, for the

operators that have two parameters of this kind and one of them

identifies a layer, we picked the layer randomly and performed

the exhaustive search on the other parameters. For example, for

the operator ACH we changed the activation function to all the

ones available in Keras for one layer picked randomly. For HBS we

identified the 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 in the DL model and provided a list of 4

pre-defined values to DeepCrime: 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ÷ 4, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 ÷ 2,

𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 2, 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 × 4. For RCD, we again picked the layer

randomly and provided 4 pre-defined values for the dropout rate

that are different from the one used in the DL model under test and

are evenly distributed in the range of (0, 1].

RQ2 [Redundant Mutation Operators]: What are the muta-

tion operators producing redundant mutants?

We further evaluate the relative effectiveness of the operators

by analysing the results produced by mutations in relation to each

other. Before proceeding with redundancy analysis we exclude

the non killable mutants, which are likely to be equivalent to the

original model.

For all pairs of killable mutants we identify whether they sat-

isfy Definition 2.7. We capture the subsumption relationship in a

graph [25]: if a mutant𝑀1 subsumes a mutant𝑀2, we add an edge

from the node of𝑀1 to the node of𝑀2. The mutants, the nodes of

which have no incoming edges, are non-redundant (or dominant),

while the remaining mutants are redundant.

RQ3 [Comparison with Post-training Mutation]: How do

DeepCrime’s pre-training mutation operators discriminate between

different qualities of test data in comparison with the post-training

operators of the existing tool DeepMutation++?

In order to assess the performance of the pre-training mutation

operators proposed and implemented in this paper, we compare

DeepCrime to DeepMutation++ [18], a model-level, post-training

mutation testing tool that implements 8 operators from the ones

introduced by Ma et al. [29] and 9 new operators designed for

stateful recurrent neural networks. We measure the sensitivity of

DeepCrime and DeepMutation++, defined as the relative variation

of the mutation score when moving from a weak to a strong test

set: 𝑆𝑒𝑛𝑠 = |𝑀𝑆 (𝑆𝑡𝑟𝑜𝑛𝑔) − 𝑀𝑆 (𝑊𝑒𝑎𝑘) |/𝑀𝑆 (𝑆𝑡𝑟𝑜𝑛𝑔). This metric

determines which of the two tools is more sensitive when reacting

to a change in the test set quality.

As opposed to DeepCrime, the mutation operators of DeepMu-

tation++ change the weights or the structure of an already trained

network. The operators of DeepMutation++ are not based on real

faults and implement post-training changes to a model that are

unlikely to happen in a real-world setting. DeepMutation++ was

implemented in older versions of Python and is based on Keras 2.2.4

with TensorFlow 1.13. To be able to apply this tool to the recently

developed case studies used in this work, we had to upgrade it to

be compatible with Python 3.8, Keras 2.4.3 and TensorFlow 2.3.0.

We also extended the applicability of the tool from Sequential Keras

models to Functional ones, by re-implementing the Layer Remove

and Layer Duplication operators.

To answer RQ3 we need two test sets: a strong and a weak

one. For the former, we use just the test data provided with the

experimental subjects, while the latter is constructed artificially.

In case of classification systems, the weak test set is obtained by

removing the test inputs on which the model under test has least

confidence. In fact, low confidence inputs are those that are closer

to the boundaries between classes and are useful to test a model in

corner cases that the model finds difficult to handle. By removing

such corner cases we expect to get a less discriminative test set,
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which is less effective in assessing the quality of the model under

test. This approach has previously been used for a similar task by

Jahangirova & Tonella [22] and for test input prioritisation by Byun

et al. [13]. In our experiment, for classification systems we build

a weak test set by keeping only the test inputs that are predicted

with a confidence equal to 1, where confidence is measured as the

highest softmax output value.

With regression systems, the most discriminative inputs are

those with minimal mean loss and minimal standard deviation of

loss in multiple evaluations, since detrimental changes in the model

are expected to be reflected first of all on the lowest error values and

are not caught by the inputs whose loss is already high. Thus, we

constructed the weak test sets for regression systems by removing

the inputs with low mean loss or low standard deviation of loss

observed on 20 instances of the original models.

5.1 Datasets and Subject DL Systems

For the evaluation of mutation operators in DeepCrime we used

5 different subject systems. We selected our subjects so that they

represent different types of DL systems (classification vs. regres-

sion), with various DLmodel structure, training data representation,

application domain and diverse tasks that they are trying to achieve.

MNIST (MN) [27] is a large dataset of handwritten digits that is

widely used in computer vision and deep learning. We adopted a

convolutional model with 8 layers [6] to automatically classify the

images into 10 digit labels.

Speaker Recognition (SR) dataset from Kaggle [9] contains 1,500

audio files for 5 different prominent leaders. The dataset also con-

tains background noise audio files such as audience laughing or

clapping. The subject model we have used for this dataset [10]

recognizes the speakers from the frequency domain representation

of speech recordings.

Movie Recommender (MR) is a DL model based on collaborative

filtering [7] that uses the MovieLens ratings dataset [8] to recom-

mend movies to users. The MovieLens dataset contains 100,836

ratings given by 610 different users to 9,742 movies. The task of

the model is to predict ratings for the movies that a user has not

watched yet and to recommend the movies with the highest pre-

dicted ratings.

Udacity (UD) self-driving car aims to predict the steering angle

for the road that the car encounters while driving in a simulation

environment. The model needs a dataset of road images labelled

with a steering angles to learn the lane-keeping functionality. We

used training data available from a previous work [17] and from

NVIDIA’s Dave-2 model [12] for this case study.

UnityEyes (UE) is a publicly available rendering framework [38]

that allows synthesis of large amounts of various eye region images.

For this subject, we use a labelled dataset [4] consisting of images

synthesised with UE. The model that comes with the dataset learns

the mapping from eye image and 2D head angle to 2D eye gaze

angle (yaw and pitch).

Table 3 lists details about our subject systems. Column Metric

indicates the metric that was used to measure the performance of

the model; Column Value provides the mean value of that metric,

when measured on the test set after completing the training process.

The DL models for the first three subjects were obtained from the

official Keras documentation [5], the fourth subject was obtained

from the existing literature [12, 17], while the fifth subject was

available in a public GitHub repository [4].

Table 3: Subject DL Systems; MSE = Mean Squared Error

ID Train Data Test Data Epochs Metric Value

MN 60,000 10,000 12 Accuracy 99.03%

SR 5,401 1,350 100 Accuracy 98.29%

MR 72,601 18,151 5 MSE 0.047

UD 9,792 2,432 50 MSE 0.014

UE 103,428 25,857 50 Angle between 3°

gaze vectors

For our 3 regression subject systemswe need to define thresholds,

so that if the difference between actual and correct predictions is

less than this value, we say that an input is predicted correctly.

For MR, we say that the rating prediction is accurate if it differs

from the correct prediction by no more than one rating. For UE,

we selected a threshold of 5 degrees as it is a step of a change of

yaw and pitch angles that was used to create the corresponding

dataset. For UD, there was no frame of reference from the dataset

itself and therefore we picked the value of 0.3 empirically based on

the predictions of the original model.

5.2 Results

5.2.1 RQ1 (Interesting Mutation Operators). Out of 24 operators

currently implemented in DeepCrime, 20 were applicable to the

subject systems that we analysed (MN: 18; SR: 16; MR: 11; UE:

17; UD:15). Four operators were not applicable, as none of our

subjects possess some specific, required property (e.g., weights

regularisation in a layer or gradient clipping value for an optimiser).

The number of mutation operator configurations ranges between

76 and 217 (MN: 217; SR: 119; MR: 76; UE: 157; UD:101). As we

performed 20 runs for each configuration, in total we performed

13400 (670 x 20) re-trainings during our experiments.

Column KS in Table 4 reports the killability score. If this value

is equal to zero, then this operator is not killable for any of the

applied parameter values. There are 10 mutation operators that are

killable for all subject systems. Two operators are not killable for

any of the subject systems: VRM and RCD.

Once the list of killable operators was identified, we proceeded

with triviality analysis for them. Column ATS in Table 4 reports

the average triviality score for each mutation operator. LCH has

the highest triviality score among all other mutation operators for

4 out of 5 subjects. When it comes to the triviality of each mutant

instance, for MN, SR, MR there are no trivial configurations (i.e,

none with triviality score > 0.9). In contrast, UE has 4 (all LCH) and

UD has 9 (8 LCH, 1 OCH) trivial mutant configurations.

RQ1: The mutation operators implemented in DeepCrime

generate a large number of killable, non-trivial mutants.

VRM and RCD are non killable for all subjects; LCH has

the highest triviality score in 4/5 subjects.
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Table 4: Killability and triviality of mutation operators; ’-’ means not applicable to the subject

Op
MN SR MR UE UD

KS ATS KS ATS KS ATS KS ATS KS ATS

TCL 97% 0.034 97% 0.059 94% 0.119 88% 0.111 81% 0.061

TRD 97% 0.036 94% 0.034 94% 0.127 75% 0.131 87% 0.072

TUD 91% 0.009 0% - 38% 0.103 1% 0.092 0% -

TAN 56% 0.002 - - - - 50% 0.082 - -

TCO 75% 0.016 97% 0.078 94% 0.108 0% - 97% 0.133

HBS 75% 0.002 - - 75% 0.149 50% 0.077 - -

HLR 81% 0.011 0% - 69% 0.100 50% 0.076 56% 0.098

HNE 82% 0.005 51% 0.029 75% 0.108 76% 0.137 88% 0.108

HDB 100% 0.003 - - 100% 0.261 - - - -

ACH 56% 0.005 11% 0.005 - - 56% 0.137 0% -

ARM 50% 0.223 0% - - - 33% 0.124 0% -

AAL - - 0% - - - 70% 0.380 - -

RAW 100% 0.003 0% - - - 100% 0.218 0% -

RCD 0% - - - - - - - 0% -

RCP - - 78% 0.016 - - - - - -

WCI 31% 0.191 8% 0.005 - - 58% 0.225 0% -

WRB 0% - 33% 0.005 - - 0% - 0% -

LCH 77% 0.010 100% 0.794 50% 0.261 82% 0.485 75% 0.654

OCH 50% 0.006 67% 0.018 100% 0.187 33% 0.171 33% 0.345

VRM 0% - 0% - 0% - 0% - 0% -

5.2.2 RQ2 (Redundant Mutation Operators). For each subject, we

excluded the non killable mutants. Table 5 provides information

about the overall number of killable configurations (ColumnKillable

Confs.), the number of redundant (Column Redundant) and the

number of non-redundant mutants (Column Non Redundant) for

each of the subject systems. As we can see from the results, the

number of redundant mutants is quite high (>=50%) for MN and

SR, both of which are classification systems. Out of 10 mutation

operators that are killable for SR, six (all except ACH, WCI, OCH,

WRB) have configurations that lead to redundant mutants. For MN

this number is even higher, with 14 out of 15 (all except TCO)

killable operators producing redundant mutants. A closer analysis

of the parameter values that lead to redundancy reveals that across

all operators this is often caused by the usage of extreme values

of the parameters. For example, for TRD such a parameter value

is removing 99% of the training data and for HNE it is changing

the number of epochs from the original number to a value as low

as 1. This trend is easily explainable, as the mutants applied with

extreme parameter values are easier to kill and therefore their fuzzy

killing sets are supersets of the harder to kill mutants.

Table 5: Redundancy Analysis

ID Killable Confs. Redundant Non Redundant

MN 75 38 37

SR 56 28 28

MR 43 4 39

UD 40 37 3

UE 66 6 60

In contrast to SR and MN, the number of redundant mutants is

low for MR and UE, both of which are regression systems. More

specifically, for MR all 4 and for UE 4 out of 6 redundant mutants are

instances of LCH operator. The remaining two redundant mutants

of UE are instances of WCI operator. The results for UD are quite

peculiar, as only 3 out of its 40 killable configurations are non-

redundant. A closer investigation on this case shows that there is a

mutant generated by applying the TCL operator with parameter

value equal to 18.75%, for which the inputs have very low killability

probabilities (hence, this mutant is very hard to kill). As a result,

almost all the other mutants are redundant with respect to this

one. If we remove this mutant from the subsumption graph, the

results become very similar to the ones of MR and UE, i.e. UD gets

to have only 7 redundant mutants, 6 of which are instances of LCH

operator and 1 is instance of OCH operator.

Overall, we can see that the results of redundancy analysis are

closely linked to the results of triviality analysis. LCH operator has

the highest triviality score across all subjects, i.e. it produces easy

to kill mutants, and as a result these mutants are also redundant

across all subjects.

RQ2: The only operator that produces redundant mutants

for 5/5 subjects is LCH. Moreover, mutation operators ap-

plied with extreme parameter values lead to the generation

of redundant mutants, which further justifies the use of

binary search to find hard to kill mutant configurations.

5.2.3 RQ3 (Comparison with Post-training Mutation). For the two

classification systems MN and SR, we extracted the weak test sets.

For MN, the size of the original, strong test set is 10,000; that of the

weak test set is 4,813. For SR, the original test set size is 1,350, while

the weak, reduced test set has size of 686. MR could not be used for

RQ3 because DeepMutation++ is not applicable to this system.
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For the regressions systems UD and UE, we considered the inputs

with the highest standard deviation of loss observed across evalua-

tions of 20 instances of the original model. For UD, the size of the

original test set is 2,432 and the size of the artificially constructed

weaker set is 1,000 inputs. For UE, the respective sizes are 25,857

and 4,000. We validated our artificially constructed weak test sets

by measuring their adequacy level according to the 𝑘-multisection

neuron coverage criterion [28] and to surprise adequacy [24]. The

resulting adequacy scores are consistently lower for the weaker

test sets than for the stronger ones.

Before calculating the mutation score for the strong and weak

test suites using DeepCrime, we performed power analysis and

excluded all mutation operators whose output data (accuracy, re-

gression prediction) have too low statistical power to decide reliably

if the mutant is killed or not (we adopted the conventional threshold

𝛽 ≥ 0.8, where 𝛽 is statistical power). This led us to the exclusion

of 8 mutation operators on MN, 2 on SR, 4 on UE, and 4 on UD.

The authors of DeepMutation++ define the mutation score [29]

for an input t as the ratio of the number of killed mutants m’ by

t to the total number of mutants𝑚: MS =𝑚′/𝑚. We then average

this value across all inputs in the test suite, to get a single mutation

score value for the test suite. When running DeepMutation++, we

used default values of its parameters, when available. We set the

mutation ratio parameter (the one that controls the łaggressivenessž

of the mutation) to 0.05, which appears to be the best performing pa-

rameter configuration among those reported in DeepMutation++’s

tool paper [18]. To get relatively stable mutation scores, we gener-

ated 400 mutants for each mutation operator that was applicable

to a subject study and verified that the standard error of the mean

mutation score was always lower than 5%, for each of the evaluated

test sets.

Table 6: Mutation scores of weak/strong test sets; Sensitivity

Subject
DeepMutation++ DeepCrime

Weak Strong Sens Weak Strong Sens

MN 0.0507 0.0591 14.21% 0.1186 1.0000 88.14%

SR 0.0618 0.0846 26.95% 0.4675 0.8500 45.00%

UD 0.1914 0.1976 3.14% 0.0000 0.7700 100.00%

UE 0.2768 0.3341 17.15% 0.6220 0.9250 32.76%

With respect to DeepMutation++, the results provided in Table 6

show that DeepCrime can better discriminate the quality of the test

data for all 4 subjects. In particular, on MN, DeepCrime achieves

88.14% of sensitivity, while DeepMutation++’s sensitivity is 14.21%.

On SR, DeepCrime outperforms DeepMutation++ by 18.05%, with

a sensitivity to the change in the test suite quality equal to 45%.

Similarly, DeepCrime outperforms the DeepMutation++ on both

regression subjects, namely, UD with a difference of 96.86% and UE

with a difference of 15.61%.

There could be a number of reasons behind the higher sensitivity

of DeepCrime. The first one is that DeepCrime’s operators are

based on real faults that are found to affect the performance of

DL systems, as observed by practitioners. Another one is that our

mutation operators are pre-training, which means that the changes

are imposed to a system before the training process commences

and are potentially affecting it. Post-training operators, while being

much cheaper w.r.t. time and resources, are mostly modifying a

randomly chosen, small portion of weights of an already trained

network.

RQ3: The pre-training mutation operators based on real

faults that are implemented in DeepCrime have substan-

tially higher sensitivity to changes of the test set quality

than the post-training mutation operators implemented in

DeepMutation++.

5.3 Threats to Validity

Construct. One threat to the construct validity is our own defini-

tion of mutation score. While we defined MS based on the statistical

comparison of performance metrics proposed by Jahangirova and

Tonella [22], we had to take into account the configuration space

of each mutation operator and find a way to determine the killed

subspace. The search used to measure the volume of the killed

subspace (we used both binary and exhaustive search, depending

on the mutation parameter) might have affected the accuracy of

the reported MS value.

Internal. We propose our mutation operators based on real

faults reported in three large scale existing studies on DL bugs.

However, there is no up-to-date exhaustive list that would cover

all possible instances of DL-related faults, especially because this

domain is rapidly evolving.

External. We evaluated DeepCrime’s mutation operators on

5 case studies and therefore we cannot guarantee generalisation

to other subjects. We carefully selected our models to represent

various tasks, architectures and areas of application. The fact that

all of our subjects are implemented using Keras can pose additional

limitations to the generalisation of our results. We made this choice

based on the popularity of the framework [2].

6 RELATED LITERATURE

6.1 Real Faults

A number of recently published studies provide an insight into the

faults specific of DL systems and thus are potential sources for the

definition of DL specific mutation operators based on real faults.

Humbatova and Jahangirova et al. [20] define a real fault in

DL systems as a case when a human-made mistake during the de-

velopment or training of a DL component, leads to functionally

insufficient performance. In their work, the authors build a com-

prehensive taxonomy of real faults in DL systems based on manual

analysis of unstructured sources such as GitHub and StackOver-

flow (SO) and semi-structured interviews with DL practitioners.

The final version of the taxonomy consists of 92 unique types of

faults that are classified into 5 top-level categories with 3 of them

further branching into inner subcategories. The final taxonomy

was validated through a survey with a set of 21 practitioners and

researchers.

Among other related publications is the work by Zhang et al. [40]

who studied a set of applications developed using the TensorFlow

framework. By manual examination of 175 generic programming

and DL specific bugs collected from StackOverflow posts and 11 DL-

related tutorial projects from GitHub, the authors focused on the
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exploration of strategies that developers employ while localising

faults in DL systems and on the associated challenges. As a result,

the authors systematised the acquired information on root causes

of bugs into seven broad types. They also classified the way such

bugs can affect the system behaviour into four categories.

Another publication that investigated general patterns of DL

bugs and their evolution over time is the work by Islam et al. [21].

Similarly to the previously discussed studies, the authors used

Github and SO to construct their dataset of 3,216 potential bug

reports. The obtained artefacts are related to the Theano, Caffe,

Keras, TensorFlow, and PyTorch frameworks and include problems

in the documentation of the frameworks as well as DL-specific and

generic programming bugs. As building a novel fault taxonomy

was not the main focus of their study, the authors adapted the

existing classification schemes by Beizer [11] and Zhang et al. [40]

to discover the patterns and classify the bugs by causes and impacts.

6.2 Mutation Testing of DL Systems

The works by Ma et al. [29] and Shen et al. [33] are the most related

to ours as they also propose mutation operators specific to DL

systems. The work by Ma et al. [29] was later extended into a

mutation testing tool for DL systems named DeepMutation++ [18].

However, as the authors of these works note themselves, none of

the proposed mutation operators are based on real faults. Moreover,

the mutation killing criteria they use do not take into account

the stochastic nature of DL systems. DeepCrime is the first tool

implementing a set of DL mutation operators rooted on real DL

faults.

The work by Jahangirova & Tonella [22] introduced a statistical

definition of mutation killing (discussed in Section 2) and performed

an empirical evaluation of the mutation operators proposed by Ma

et al. [29] and Shen et al. [33]. The authors investigated whether the

mutation operators are killable and non trivial. For the definition

of killable mutation operator they used the largest test set available

and checked whether it kills the mutant. In our work, we use the

training set to analyse killability, as this is the set to which the DL

system is most sensitive. To filter out trivial mutations, the authors

investigated whether the mutant is getting killed by a very "weak"

test suite (1% of the available test set). In contrast, we used fuzzy

set theory for triviality analysis and do not rely on the hypothesis

that the strength of a test set depends on its size. DeepCrime is the

first DL mutation tool that implements stochastic measures for key

mutation analysis indicators, such as the mutation score, and for

key properties, such as killability, triviality and redundancy.

7 CONCLUSION AND FUTUREWORK

We have proposed 35 and implemented 24 DL-specific mutation

operators based on real faults that have been reported in 3 existing

DL fault taxonomies. The empirical assessment of the implemented

operators shows that most of these operators are killable and non

trivial. There is only one mutation operator that produces config-

urations which are redundant for all subject studies, while there

is not a case when all of the configurations for this operator are

redundant. The evaluation and the comparison with the existing

DL mutation tool DeepMutation++ showed that our operators can

discriminate more effectively a weaker from a stronger test set.

In our future work, we plan to implement the remaining 11 oper-

ators that were extracted from the fault taxonomies. We intend to

extend the applicability of DeepCrime beyond models written for

Keras framework. We think DeepCrime will enable a number of ap-

plications to existing software engineering problems. In particular,

we are interested in the possible connection between automated test

input generation for DL systems and mutation adequacy. We think

that DeepCrime can provide a solid framework for the empirical

assessment of alternative test generators, since its mutations simu-

late real DL faults, which are the target of automatically generated

test cases.
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