
1

Unit Testing with JUnit

Slides are based on materials from UWashington and NCSU

2

Review: Test Inputs, Oracles, and Generation

2

3

Bugs and testing
• software reliability: Probability that a software system will

not cause failure under specified conditions.

• Bugs are inevitable in any complex software system.

• testing: A systematic attempt to reveal errors.

• Failed test: an error was demonstrated.

• Passed test: no error was found (for this particular situation).

4

Difficulties of testing
• Limitations of testing:

• It is impossible to completely test a system.

• It is ok to give up on some paths

• It is hard to get testing oracles

• Testing does not always directly reveal the actual bugs in the code.

• Testing does not prove the absence of errors in software.

• But:

• Testing increases confidence that your program works correctly

• Can be automated (partially)

5

Unit Testing

• The most basic level of software testing

• Many programming languages provide unit testing framework (xUnit)

• Looking for errors in a subsystem in isolation.
• Generally a "subsystem" means a particular class or object; Testing the

functionality of individual methods
• Independent paths within the source code

• Logical decisions as both true and false

• Loops at their boundaries

• Internal data structures

• …

6

Unit Testing
• The basic idea:

• For a given class Foo, create another class FooTest to test it,
containing various "test case" methods to run.

• Each method looks for particular results and passes / fails.

• Testing Strategies
• Test Requirements
• Test Boundary Values
• Test All Paths
• Test Exceptions
• …

• JUnit provides "assert" commands to help us write tests.
• The idea: Put assertion calls in your test methods to check things

you expect to be true. If they aren't, the test will fail.

7

Tips for testing
• You cannot test every possible input, parameter value, etc.

• So you must think of a limited set of tests likely to expose bugs.

• Think about boundary cases
• positive; zero; negative numbers

• right at the edge of an array or collection's size

• Think about empty cases and error cases
• 0, -1, null; an empty list or array

• test behavior in combination
• maybe add usually works, but fails after you call remove

• make multiple calls; maybe size fails the second time only

8

Trustworthy tests
• Test one thing at a time per test method.

• 10 small tests are much better than 1 test 10x as large.

• Each test method should have few (likely 1) assert
statements.
• If you assert many things, the first that fails stops the test.
• You won't know whether a later assertion would have failed.

• Tests should avoid logic.
• minimize if/else, loops, switch, etc.
• avoid try/catch

• If it's supposed to throw, use expected= ... if not, let JUnit catch it.

• Torture tests are okay, but only in addition to simple tests.

9

JUnit and Eclipse
• To add JUnit to an Eclipse project, click:

• Project→ Properties→ Build Path→ Libraries→
Add Library...→ JUnit→ JUnit 5→ Finish

• To create a test case:
• right-click a file and

choose New → Test Case

• or click File→ New→
JUnit Test Case

• Eclipse can create stubs
of method tests for you.

10

A JUnit test class – Junit 4
import org.junit.*;

import static org.junit.Assert.*;

public class name {

...

@Test

public void name() { // a test case
method

...

}

}

• A method with @Test is flagged as a JUnit test case.
• All @Test methods run when JUnit runs your test class.

11

A JUnit test class – Junit 5

import static org.junit.jupiter.api.Assertions.*;
import org.junit.jupiter.api.Test;

public class PalindromeTest {

 @Test
 public void testIsPalindrome_valid() {
 assertTrue(Palindrome.isPalindrome(7));
 assertTrue(Palindrome.isPalindrome(11));
 assertTrue(Palindrome.isPalindrome(999));
 }

 @Test
 public void testIsPalindrome_invalid() {
 assertFalse(Palindrome.isPalindrome(10));
 }

}

Import JUnit 5 libraries

test<MethodName>_optionalCondition()

<SourceCodeClassName>Test.java

12

Assert Methods

• Assert methods provide information about the expected and actual values
of a test case
• assertEquals(expected, actual);

• For doubles, you will have a third argument, delta
• Better practice: include an error message in the assertion assertEquals(expected,

actual, message);
• assertTrue(actual);
• assertFalse(actual);
• assertNull(actual);
• assertNotNull(actual);

• Each method can be passed a string to display if it fails:
• e.g. assertEquals("message", expected, actual) - Junit 4

• e.g. assertEquals(expected, actual, "message") - Junit 5

24

Testing for exceptions – Junit 5

25

Junit 5 Annotations
• @Test

• @ParameterizedTest
• Run a rest multiple times with difference arguments

• Must declare at lease one source that will provide the arguments for each
invocation and then consume the arguments in the test method

26

Junit 5 Annotations
• @DisplayName

• @RepeatedTest
• Repeat a test a specified number of times

• Each invocation behaves like a regular @Test method

27

Junit 5 Annotations
• @Disabled

• Skip tests

28

Junit 5 Annotations
• @Timeout -- you should always test with timeout!

• Default: seconds

Thread.sleep() in milliseconds

29

Junit 5 Annotations

methods to run before/after each test case
method is called

methods to run once before/after the entire
test class runs

36

Demo: Calculator

37

Demo: Palindrome

• Write a program to test if the input String is a Palindrome in Java.
Input can be a Word, Number or even a Phrase.
• White space - acceptable

• Punctuation marks - not acceptable

• Any Case - acceptable

38

JUnit summary
• Tests need failure atomicity (ability to know exactly what failed).

• Each test should have a clear, long, descriptive name.

• Assertions should always have clear messages to know what failed.

• Write many small tests, not one big test.
• Each test should have roughly just 1 assertion at its end.

• Always use a timeout parameter to every test.

• Test for expected errors / exceptions.

• Choose a descriptive assert method, not always assertTrue.

• Choose representative test cases from equivalent input classes.

• Avoid complex logic in test methods if possible.

• Use helpers, @BeforeEach @BeforeAll to reduce
redundancy between tests.

	Slide 1: Unit Testing with JUnit
	Slide 2: Review: Test Inputs, Oracles, and Generation
	Slide 3: Bugs and testing
	Slide 4: Difficulties of testing
	Slide 5: Unit Testing
	Slide 6: Unit Testing
	Slide 7: Tips for testing
	Slide 8: Trustworthy tests
	Slide 9: JUnit and Eclipse
	Slide 10: A JUnit test class – Junit 4
	Slide 11: A JUnit test class – Junit 5
	Slide 12: Assert Methods
	Slide 24: Testing for exceptions – Junit 5
	Slide 25: Junit 5 Annotations
	Slide 26: Junit 5 Annotations
	Slide 27: Junit 5 Annotations
	Slide 28: Junit 5 Annotations
	Slide 29: Junit 5 Annotations
	Slide 36: Demo: Calculator
	Slide 37: Demo: Palindrome
	Slide 38: JUnit summary

