Automated Program Repair

GenProg

Evolutionary Program Repair

|

Project Overview @ Videos

A Systematic Study of Automated Program Repair:
Fixing 55 out of 105 bugs for $8 Each

Defects Cost per Non-Repair ~ Cost Per Repair

Program Repaired Hours US$ Hours USS$ LOC Tests Defects
fbc 1773 8.52 5.56 6.52 4.08 97.000 773 3
gmp 152 9.93 6.61 1.60 0.44 145,000 146 2
gzip 1/ 5 5.11 3.04 1.41 0.30 491.000 12 5
1libtiff 17724 7.81 5.04 1.03 0.04 77.000 78 24
lighttpd 5/9 10.79 125 1.34 0.25 62,000 295 9
php 28/ 44 13.00 8.80 1.84 0.62 1046000 8471 44
python 1/ 11 13.00 8.80 1.22 0.16 407.000 355 11
wireshark LiT 13.00 8.80 1.23 0.17 2.814.000 63 7

—
=
wm

total 55/105 11.22h 1.60h 5,139,000 10,193

The Never-Ending Story

e Today we will use recent advances in automated program
repair to touch on (almost) aII of the Iecture topics from
this course s e L s

Speculative Fiction

e What if large, trusted companies paid strangers online to
find and fix their normal and critical bugs?

ONLINE SHOPPING

webcomicname.com

Microsoft Security Response Center

COMMUNITY COLLAB

WHAT WE DO REPORT A VULNERABILITY

Featured Vide

popular products better? And earn money doing so? Step right up

Microsoft is now offering direct cash payments in exchange for reporting certain types
of vulnerabilities and exploitation techniques.

In 2002, We ' v
doing what we belleve best helps improve our customers’ computing experience. In the years
since, we introduced the Security Development Lifecycle (SDL) process to build more secure
technologies. We also championed Coordinated Vulnerability Disclosure (CVD), formed industry

_ Trustworthy Compui
collaboration programs such as MAPP and MSVR, and created the BlueHat Prize to encourage Noiatinn Nask nact{

research into defensive technologies. Our new bounty programs add fresh depth and flexibility
to our existing community outreach programs. Having these bounty programs provides a way

introduce new boun'

rch
to harness the collective intelligence and capabilities of security researchers to help further researchers.
protect customers.
The following programs will launch on June 26, 2013:
1. Mitigation Bypass Bounty. Microsoft will pay up to $100,000 USD for truly novel About the pro
exploitation techniques against protections built into the latest version of our operating
system (Windows 8.1 Preview). Learning about new exploitation techniques earlier helps T
Mitigation Bypass B

Microsoft improve security by leaps, instead of capturing one vulnerability at a time as a

traditional bug bounty alone would. TIMEFRAME: ONGOING D Suval

Internet Explorer 11
2. BlueHat Bonus for Defense. Additionally, Microsoft will pay up to $50,000 USD for Guidelines
defensive ideas that accompany a qualifying Mitigation Bypass submission. Doing so
highlights our continued support of defensive technologies and provides a way for the Bounty Programs F/
research community to help protect more than a billion computer systems worldwide.
TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty). New Bounty Progra

information on bow

3. Internet Explorer 11 Preview Bug Bounty. Microsoft will pay up to $11,000 USD for Heart of Blue Gold -

I oeaiLrt MIAOSUI.CL

B -_'v’!’?.‘l O O S S O O A OSSO

LV RESUONISNE - Alls

PayPaI' Buy ~ Sell ~ | Transfer ~

For Security Researchers Bug Bounty Wall of Fame

For Customers: Reporting Suspicious Emails

Customers who think they have receved a Phishing email, please learn more about phishing at https:/fcms.paypal.com/us/cgi-bin/marketingweb?cmd=_render-
content&content_ID=security/hot_security_topics, or forward it to. spoof@paypal com

For Customers: Reporting All Other Concerns
Customers who have issues with their PayPal Account, please visit. https://lwww.paypal.com/cgi-bin/helpscr?cmd=_help&t=escalateTab
For Professional Researchers: Bug Bounty Program

Our team of dedicated security professionals works vigilantly to help keep customer information secure. We recognize the important role that security researchers and our
user community play in also helping to keep PayPal and our customers secure. If you discover a site or product vulnerability please notify us using the guidelines below

Program Terms

Please note that your participation in the Bug Bounty Program is voluntary and subject to the terms and conditions set forth on this page ("Program Terms®). By submitting
a site or product vulnerability to PayPal, Inc. ("PayPal”) you acknowiedge that you have read and agreed to these Program Terms

These Program Terms supplement the terms of PayPal User Agreement, the PayPal Acceptable Use Policy, and any other agreement in which you have entered with
PayPal (collectively “PayPal Agreements”). The terms of those PayPal Agreements will apply to your use of, and participation in, the Bug Bounty Program as if fully set
forth herein. If there is any inconsistency exists between the terms of the PayPal Agreements and these Program Terms, these Program Terms will control, but only with
regard to the Bug Bounty Program

You can jump to particular sections of these Program Terms by using the following links
Responsible Disclosure Policy

Eligibility Requirements

Rin Submi iramante and Guidalinas

research community to help protect more than a billion computer systems worldwide.

TIMEFRAME: ONGOING (in conjunction with the Mitigation Bypass Bounty). ’::: “:2‘7 P“::"’
| rmation on ul

3. Internet Explorer 11 Preview Bug Bounty. Microsoft will pay up to $11,000 USD for

Heart of Blue Gold -

PayPal

I oeaiLrt MIAOSUI.CL

’ lA ':I?‘?Z-'l 4 ITT-|T§'|'~.'-V-“TI-rr"'-:n'- l'-"' -.‘, --. :".- '.-. .., " . %' . - X : 1
2
o e

‘ b

O)) |

Buy ~ Sell ~ Transfer ~

ipport > AT&T Bug Bounty Program > Intro

AT&T Bug Bounty Program

Intro Rewards Report Bug Hall of Fame PRINT 0 EMAIL

Intro Already a Member?

Guidelines or Join Now
Exclusions Sign In

Terms & Conditions

Welcome to the AT&T Bug Bounty Program! This program encourages and rewards contributions by developers and security researchers
who help make AT&T's online environment more secure. Through this program AT&T provides monetary rewards and/or public
recognition for secunty vulnerabilities responsibly disclosed to us.

The following explains the details of the program. To immediately start submitting your AT&T security bugs, please visit the Bug Bounty
submittal page.

Guidelines

The AT&T Bug Bounty Program applies to security vulnerabilities found within AT&T's public-facing online environment. This includes,
but not limited to, websites, exposed APIs, and mobile applications.

A security bug is an error, flaw, mistake, failure, or fault in a computer program or system that impacts the security of a device,
system, network, or data. Any security bug may be considered for this program; however, it must be a new, previously unreported,
vulnerability in order to be eligible for reward or recognition. Typically the in-scope submissions will include high impact bugs; however,
any vulnerability at any severity might be rewarded.

Bugs which directly or indirectly affect the confidentiality or integrity of user data or privacy are prime candidates for reward. Any
secunty bug, however, may be considered for a reward. Some characteristics that are considered in "qualifying” bugs include those

=. Microsoft | MSRC Report an issue ~ Customer guidance Engage - Who we are ~ Blogs - Acknowledgments -~

Microsoft Bug Bounty Program

Cloud Programs

Last
Program Name Start date Updated End date Eligible entries Bounty Range
Microsoft Azure 2014-09-23 2021-10-18 Ongoing Vulnerability reports on Microsoft Azure cloud services Up to $60,000 USD
Microsoft strongly believe " . T P
Mi ft Identi 2018-07-17 2019-10-23 Ongoi Vulnerability reports on Identity services, including Microsoft Account, Azure Active Directory, or select OpenlD Up to $100,000
partner together to bette icrosoft Identity el I M9%N9 tandards. usD
Xbox 2020-01-30 2020-01-30 Ongoing Vulnerability reports on the Xbox Live network and services Up to $20,000 USD

If you are a security resea
you may receive a bounty M365 2014-09-23 2019-08-05 Ongoing Vulnerability reports on applicable Microsoft cloud services, including Office 365 Up to $20,000 USD

counted in our Research

Microsoft Azure DevOps Services 2019-01-17 2019-01-17 Ongoing Vulnerability reports on applicable Microsoft Azure DevOps Services Up to $20,000 USD
Click here to submit a s Phllal:;::;& Dynamics 365 and Power 2019-07-17 2022-04-14 Ongoing Vulnerability reports on applicable Microsoft Dynamics 365 and Power Platform applications Up to $20,000 USD
The Microsoft Bug Bount Microsoft .NET 2016-09-01 2020-11-20 Ongoing Vulnerability reports on .NET Core and ASP.NET Core RTM and future builds (see link for program details) Up to $15,000 USD

Let the huntbegir p|atform Programs
Our bug bounty program

Last

Program Name Start Date Updated End Date Eligible Entries Bounty Range

. 2017-05 . e L .) . . e Up to $250,000
Microsoft Hyper-V 31 2020-04-13 Ongoing Critical remote code execution, information disclosure and denial of services vulnerabilities in Hyper-V U[;DQ ¥

. - . e . . . Up to $100,000
Microsoft Windows Insider Preview 2017-07-26 2020-08-27 Ongoing Critical and important vulnerabilities in Windows Insider Preview UsD
Mi ft Applicati d On-Premi . e . e I .
SE:_T::: pplications and Un-Fremises 2021-03-24 2022-04-05 Ongoing Critical and important vulnerabilities in Microsoft Applications and On-Premises Servers Up to $30,000 USD
Windows Defender Application Guard 2017-07-26 2017-07-26 Ongoing Critical vulnerabilities in Windows Defender Application Guard Up to $30,000 USD

. . . Critical, importa; d moderate vulnerabilities in Mi ft Edge (Chromium-based) Dev, Beta, and
Microsoft Edge (Chromium-based) 2019-08-20 2021-10-21 Ongoing " Ucak important, and moderate vulnerabilities in Microsoft Edge (Chromium-based) Dev, Beta, an Up to $30,000 USD

Stable channels

Microsoft 365 Insider 2017-03-15 2023-01-20 Ongoing Vulnerabilities on Microsoft 365 Insider Up to $15,000 USD

ElectionGuard 2019-10-18 2021-03-31 Ongoing Vulnerabilities in ElectionGuard Up to $15,000 USD

V| JOLINE

BNIer

Personal Business Email Password forgot? Log In Sign Up

Paypal Buy ~ Sell ~ Transfer ~

pport > AT&T Bug Bounty Program > Intro

AT&T Bug Bounty Program

Intro Rewards Report Bug Hall of Fame PRINT EMAIL

Raise your hand if true

| have used software produced by
Microsoft, PayPal, AT&T, Facebook,
Mozilla, Google or Youtube.

w

vulnerability in order to be eligible for reward or recognition. Typically the in-scope submissions will include high impact bugs; however,
any vulnerability at any severity might be rewarded.

Bugs which directly or indirectly affect the confidentiality or integrity of user data or privacy are pnme candidates for reward. Any
secunty bug, however, may be considered for a reward. Some characteristics that are considered in "qualifying” bugs include those

Bug Bounties

e |f you trust your triage and code review processes, anyone
can submit a candidate bug report or candidate patch

* Bug Bounties combine defect reporting and triage with
pass-around code review

e Finding, fixing and ignoring bugs are all so expensive that it
is now (~2013+) economical to pay untrusted strangers to
submit candidate defect reports and patches

Bug Bounties and Large Companies

e “We get hundreds of reports every day. Many of our best
reports come from people whose English isn't great —
though this can be challenging, it's something we work with

just fine and we have paid out over S1 million to hundreds
of reporters.”

e Matt Jones, Facebook Software Engineering

Bug Bounties and Small Companies

*Only 38% of the submissions were true positives (harmless,
minor or major): “Worth the money? Every penny.” - Colin
Percival, Tarsnap

For this reason, Tarsnap has a series of bug bounties. Similar to the bounties offered by Mozilla and Google, the Tarsnap bug bounties
provide an opportunity for people who find bugs to win cash. Unlike those bounties, the Tarsnap bug bounties aren't imited to security bugs.
Depending on the type of bug and when it is reported, different bounties will be awarded:

Bounty |Pre-release

value bounty value R

$1000 |$2000 A bug which allows someone intercepting Tarsnap traffic to decrypt Tarsnap users' data.

$500 $1000 A bug which allows the Tarsnap service to decrypt Tarsnap users' data.

$500 $1000 A bug which causes data corruption or loss.

$100 $200 A I:_mg which causes Tarsnap to crash (without corrupting data or losing any data other than an archive currently
being written).

$50 $100 Any other non-harmless bugs in Tarsnap.

$20 $40 Build breakage on a platform where a previous Tarsnap release worked.

$10 $20 "Harmless"” bugs, e.g., cosmetic errors in Tarsnap output or mistakes in source code comments.

A patch which significantly improves the clanty of source code (e.g., by refactoring), source code comments (e.g.,
35 $10 by rewording or adding text to clarify something), or documentation. (Merely pointing to something and saying "this 11
Is unclear” doesn't qualify; you must provide the improvement.)

A Modest Proposal

e Using techniques from this class
e \We can automatically find and fix defects
e Rather than, or in addition to, paying strangers

e Given a program ...
e Source code, binary code, etc.

e ... and evidence of a bug ...
e Passing and failing tests, crashes, etc.

e ... fix that bug.
e C(Create a textual patch (pull request)

SKSNET

12

How could that work?

e Many faults can be localized to a small area
e Even if your program is a million lines of code, fault localization can

narrow it to 10-100 lines
e Many defects can be fixed with small changes

e Mutation (test metrics) can generate candidate patches from simple edits
e A search-based software engineering problem

e Can use testing (inputs and oracles, continuous integration) to
assess patch quality

e [Weimer et al. Automatically Finding Patches Using Genetic
Programming. Best Paper Award. IFIP TC2 Manfred Paul Award.
SIGEVO “Humies” Gold Award. Ten-Year Impact Award.]

13

INPUT

<
V74

GenProg

COMPILE AND TEST
(EVALUATE FITNESS)

MUTATE

C
V7

OUTPUT

14

Minimizing Patches

e A GenProg patch may contain extraneous edits

e “close();” vs. “close(); x=x+0;”
e Both pass all tests, but ...

e onger patches are harder to read

e Extraneous edits may only appear safe because of weak test
suites: avoid unneeded churn

e After the repair search, use delta debugging (hypothesis
testing) to find a passing 1-minimal edit subset

15

Name Subjects Tests Bugs Notes

AFix 2 Mloc - 8 Concurrency, guarantees

ARC = = = Concurrency, SBSE

ARMOR 6 progs. — 3+-— Identifies workarounds

JAVES 13 progs. - - Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc - 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc — 7/- Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. - - Data struct consistency, Red Team
FINCH 13 tasks — — Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinathet al. 2 methods. - 20 Heap specs, SAT

Jolt 5 progs. — 8 Escape infiniteloops at run-time
Juzi 7 progs. — 20 +— Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. - 17 Buffer overflows

Name Subiects Tests Bugs Notes

AFix 2 Mloc - 8 Concurrency, guarantees

ARC = = = Concurrency, SBSE

ARMOR 6 progs. — 3+-— Identifies workarounds

JAVES 13 progs. - - Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC PlARE - 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc — 7/- Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. - - Data struct consistency, Red Team
FINCH (ERENS — — Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinathet al. 2 methods. - 20 Heap specs, SAT

Jolt 5 progs. — 8 Escape infiniteloops at run-time
Juzi 7 progs. — 20 +— Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. - 17 Buffer overflows

Name Subjects Tests Bugs Notes

AFix 2 Mloc - 8 Concurrency, guarantees

ARC = = = Concurrency, SBSE

ARMOR 6 progs. — 3+-— Identifies workarounds

JAVES 13 progs. - - Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc - 5 Co-evolves tests and programs
ClearView Firefox 57 9 Red Team quality evaluation

Coker Hafiz 15 Mloc — 7 /- Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. - - Data struct consistency, Red Team
FINCH 13 tasks — — Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-competitive, SBSE
Gopinathet al. 2 methods. - 20 Heap specs, SAT

Jolt 5 progs. — 8 Escape infiniteloops at run-time
Juzi 7 progs. — 20 +— Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-based patches, quality study
SemFix 12 Kloc 250 Ju Symex, constraints, synthesis
Sidiroglou et al. 17 progs. - 17 Buffer overflows

Concurren.\. guarantees

Identifieswor' _.cu... =
Concurre ncy, guarantees, Pe ‘ri nets
Contracts, 'tarantees

Co-evolves tests and programs

Red Team quality ev~'--*_
Integer bugs only, >*'arantees
Mutation, fault localization focus
Data struct consistency, Red Team
Evolves unrestricted bytecode

Human-competitive, SBSE

Escape infiniteloopsat run-time
Data struct consistency, models
Differences in behavior models
Human-based patches, quality study

Symex, constraints, synthesis

Name Subjects Tests Bugs Notes

AFix 2 Mloc - 8

ARC = = = Concurrency, SBSE
ALY/ (0] 6 progs. = 3+-

JAVES 13 progs. - -

AutoFix-E 21 Kloc 650 42

CASC 1 Kloc — 5

ClearView Firefox 57)

Coker Hafiz 15 Mloc — 7/-

Debroy Wong 76 Kloc 22,500 135

Demsky et al. 3 progs. - -

FINCH IRRENE - -

GenProg 5 Mloc 10,000 105

Gopinathet al. 2 methods. - 20 Heap specs, SAT
Jolt 5 progs. — 8

Juzi 7 progs. = 20 +—

PACHIKA 110 Kloc 2,700 26

PAR 480 Kloc 25,000 119

SemFix 12 Kloc 25U 90

Sidiroglou et al. 17 progs. - 17 Buffer overflows

Name Subjects Tests Bugs Notes

AFix 2 Mloc - 8 Concurrency, guarantees

ARC = = = Concurrency, SBSE

ARMOR 6 progs. — 3+-— Identifies workarounds

JAVES 13 progs. - - Concurrency, guarantees, Petri nets
AutoFix-E 21 Kloc 650 42 Contracts, guarantees

CASC 1 Kloc - 5 ~- _._~~t*ests and programs
ClearView Firefox 57 9 Read Team ~:-_ ity evaluation

Coker Hafiz 15 Mloc — 7/- Integer bugs only, guarantees
Debroy Wong 76 Kloc 22,500 135 Mutation, fault localization focus
Demsky et al. 3 progs. - - Data struct consiste cy, Red Team
FINCH 13 tasks — — Evolves unrestricted bytecode
GenProg 5 Mloc 10,000 105 Human-co~ petitive, SBSE
Gopinathet al. 2 methods. - 20 Heap specs, SAT

Jolt 5 progs. — 8 Escape infiniteloops at run-time
Juzi 7 progs. — 20 +— Data struct consistency, models
PACHIKA 110 Kloc 2,700 26 Differences in behavior models

PAR 480 Kloc 25,000 119 Human-ba- 2d patches, quality study
SemFix 12 Kloc 250 90 Symex, constraints, synthesis
Sidiroglou et al. 17 progs. - 17 Buffer overflows

Minimizing Costs

e Can stop generating candidate mutants when a valid repair
is found, parallelize in the cloud

e[Le Goues et al. A Systematic Study of Automated Program
Repair: Fixing 55 out of 105 bugs for S8 Each.]

e Each repair must pass the entire test suite

* Running tests is the dominant cost of automated program repair
e Use test suite prioritization and minimization

e Stop evaluating as soon as a single test fails
e Even one failure - Not a valid repair!

21

Can We Avoid Testing?

e |f P1 and P2 are semantically equivalent they must have the same

e Consider this insertion:

C

functional test behavior

99;

4

1
2,
3

O @ >
o

4

D=4;

print(A,B,C,D);

22

Can We Avoid Testing?

e |f P1 and P2 are semantically equivalent they must have the same

functional test behavior

e Consider this insertion:

o A=1;
. C=99; € B = 2;
. ‘\ C=3
. ‘\ D =4;

o ‘qprmt(A,B,C,D);

23

Static Analysis

e |f we had a cheap way to approximately decide if two programs
are equivalent

e We wouldn't need to test any candidate patch that is equivalent to a
previously-tested patch

e (Cluster or quotient the search space into equivalence classes with
respect to this relation)

* We use static analysis (like a dataflow analysis for dead code or
constant propagation) to decide this: 10x reduction in search
space

e [Weimer et al. Leveraging Program Equivalence for Adaptive
Program Repair: Models and First Results.]

24

Design Patterns

* In mutation testing, the mutation operators are based on
common human mistakes

e Instead, use human edits or design patterns
e “Add a null check” or “Use a singleton pattern”

e Mine 60,000 human-written patches to learn the 10 most
common fix templates

e Resulting approach fixes 70% more bugs

e Human study of non-student developers (n=68): such patches are 20%
more acceptable

e[Kim et al. Automatic Patch Generation Learned from Human-
Written Patches. Best paper award.]

25

Not Trivial: Death

e Rank these causes of death in the US for 2016 (most recent
CDC data available):

e Accidents (unintentional injuries)
e Assault (homicide)

e Heart disease

e |nfluenza and pneumonia

e One of these is about 20-100x more common than another.
ldentify that pairing.

Not Trivial: Death Details

2017 CDC (Table D, Page 12, extract)

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsre8 06-508.pdf
Cause of death (based on ICD-10) Rank! Deaths

All causes ... 2,179,857

Diseases of heart (100-109,111,113,120-151) 008,485
Malignant neoplasms (CO0-C97) 465,679
Chronic lower respiratory diseases (J40-J47) 139,833
Accidents (unintentional injuries) (V01-X59,Y85-Y86) 127,029
Cerebrovascular diseases (160-169) 110,038
Alzheimer disease (G30) 101,876
Diabetes mellitus (E10-E14) 95,116
Influenza and pneumonia (J09-J18) 43,397
Intentional self-harm (suicide) (*U03,X60-X84,Y87.0) 38,106
Nephritis, nephrotic syndrome and

nephrosis (NOO-NO7,N17-N19,N25-N27) 35,191
Chronic liver disease and cirrhosis (K70,K73-K74) 30,223
Septicemia (A40-A41) 30,198
)
)

1
2
3
4
9
6
f
8
9

Essential hypertension and hypertensive renal disease (10,112,115 24,465
Assault (homicide) (*U01-*U02,X85-Y09,Y87.1 5,747

https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf

Psychology: Emotions vs. Math

eN=1111 (!) adult participants were shown math problems to
assess their numeracy

e (half were shown the numbers flipped)

Result

Rash Got Better Rash Got Worse
Patients who did use
the new skin cream 2 2 3 7 5

Patients who did not
use the new skin cream | 107 21

What result does the study support?

People who used the skin cream were more likely to get better than those who didn't.

' People who used the skin cream were more likely to get worse than those who didn't.

|dentity-Protection Cognition Thesis

e First, 59% of participants got it wrong
e Second, they tracked political beliefs

e Third, they also gave the same math problems (same numbers,
etc.), but reworded the treatment as a city passing a gun ban and
the effect as crime decreasing (or not)

e Spoiler: highly-numerate people end up more vulnerable to bias

e [Kahan et al. Motivated Numeracy and Enlightened Self-
Government. Behavioral Public Policy.]

Liberal Democrat (-1 SD on Conservrepub)

Conservative Republican (+1 SD on Conservrepub)
low numeracy = 3 correct/ high numeracy =7 correct

Low numeracy

High numeracy
rashincreases .\, jecreases
rashincreasgs

A

decreases
rash decreasesy
rash decreases
Skin treatment

4

T T T T T T T T T

0% 10% 20% 30% 409% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
probabilityof correct interpretation ofdata

probability of correctinterpretation of data
crime decreases

crime increases
erime decreas
A

A
" / icrimeincreases
i

crime increases
[

j 1
i

Gun ban

crime decreases

crime decreases F.f'
crime increases
-

l.
H r
.; ' \-
!
I

- 1‘.
e
))

S,
I ¥ T T

t
!
!
!
\
!
1
!
!
!

i
e -
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 0% 10% 20% 30% 40% 50% 60% 70% B80% 90% 100%
probability of correct interpretation of data

30
probability of correct interpretation of data

eRisk is “likelihood of P happening”
* “cost if P happens”

e Amdahl's Law is “time spent on P”
* “improvement possible to P”

e But we can't do math ...

e[https://www.smbc-
comics.com/?id=2305 |

https://www.smbc-comics.com/?id=2305
https://www.smbc-comics.com/?id=2305

Super Opportunity Cost

e |f you are really interested in the

greatest good for the greatest number,
don't focus on muggings

e Dually, focus on muggings if you like,

but don't lie to yourself about what you
are doing

Local importance to you vs. global
importance overall

INSTEAD OF STOPPING

CRIMINALS How ABOUT NOL

TRANSFORT LOPDS OF G?NN?
<0 STARVING PEORLE?

NEW PLAN: USE YOUR STRENGTH TO

PLOW FARMLAND IN \MPOVERIGHED

COUNTRIES. ECONOMSTS THINK
THKT'S BETTER LONGTERM,

ESVERY GECOND
OF QUIBBLING \S
ANQTHER DEMD
BrRY.

WE NEED YOU TO CRANK TS MAGNET AS FAST|
pS POSS\BLE. THE ENERGY (T CENERAIES WL
BE SO CHEAD TuNtT EVERYWE CAN ENJOY A
WESTERN STANDARD OF LWING.

OH, THAT REMINDS
ME. KEEP YOURSPEED
CONSTANT AT AL\

WHERE WE DONATE VS. DISEASES THAT KILL US

.Breast Cancer

W
N
i
o

.Prnstate Cancer

w
=
7))
o

.Heart Disease

m
c
0
£
.E
o
Q
.E
S
o
o
c
o
=

W
U
(=

. Motor Neuron Disease (including ALS)

HIV/AIDS|® Diabetes cp, onic Obstructive Pulmonary Disease
Suicide 100k 200k 300k 400k 500k 600k

Total Deaths (US)

Sources: CDC, 2011; Komen Race for the Cure, 2012; Movember, 2013; Jump Rope for
Heart, 2013; ALS Ice Bucket Challenge, 2014; Ride to End Aids, 2013; Fight for Air Climb,
2013; Step Out: Walk to Stop Diabetes, 2013; Out of Darkness Overnight Walk, 2014.

Cognitive Bias Conclusion

e Spend time figuring out what you want

e Spend time figuring out what actions you need to take

e Don’t ascribe to one set of beliefs without
justification

e Liberal or conservative? Benefits/drawbacks to both

HeEY SFEMT BY THE U3,
I THE LAST TEW

HEARLY

Relationship with Mutation Testing

e This program repair approach is a dual of mutation testing

e This suggests avenues for cross-fertilization and helps explain some
of the successes and failures of program repair.

e\Very informally:

e PR Exists M in Mut. Forall T in Tests. M(T)
e MT Forall M in Mut. Exists T in Tests. Not M(T)

35

ldealized Formulation

* [deally, mutation testing
takes a program that
passes its test suite and
requires that all mutants
based on human mistakes
from the entire program
that are not equivalent fail
at least one test.

* By contrast, program
repair takes a program
that fails its test suite and
requires that one mutant
based on human repairs
from the fault localization
only be found that passes
all tests.

36

No Source Code Needed

e Can repair assembly or binary programs to support multi-

language projects

Original Result Original Resull
movq 8(%rdx), %rdi movq 8(%rdx), %rdi movq 8(Y%rdx), %rdi movq 8(%rdx), %rdi
xorl %eax, %eax xorl Jeax, Jeax xorl %eax, %eax xorl J%eax, %eax
movq Ardx, -80(%rbp) e movq -80(%rbp), %rdx movq ~80(%rbp) , Ardx
addl $1, %ridd addl $1, %riad addl $1, X%rid4d addl $1, %riad
call atoi call atoi call atoi call atoi
movq -80(%rbp), %rdx movq Jrdx, -80(%rbp)
movl %eax, (%ri1Ss) movl %eax, (%r15) movl %eax, (%r15) movq ~-80(%rbp) , Ardx
addq $4, %r15 addq $4, %r15 addq $4, %r15 movl Jeax, (%rib)
adda $4. YUris
(a) Delete (b) Insert

e Use sampling-based profiling for fault localization

Sample Raw Sample
Program Counter Counts

memory addr.
AN
L4
to instruction

[Schulte et al. Automated Program Repair of CPU
Binary and Assembly Programs for Cooperating
Embedded Devices.]

v J;lu\.,d.h.

Smoothed Sample

Counts
movq 8(Xrdx), Xrdi

xorl Leax, Yeax
movl Yeax, (%r15)
addl $1, Aridd
call atol
movg -80(%rbp), Ardx
movq Irdx, -80(%rbp)
=

addq $4, %rl$
movq 8(%rdx), Xrdi
xorl Zeax, Yeax
movl Zeax, (XriS)
addl $1, Aridd

Machine-code
Instructions

37

Can Humans Use These Patches?

e Synthesize “What” comments for generated patches
(design for maintainability)

e Test input generation constraints - English
e Human study (N=150): “With docs - Yes!”

i
L U
o 4 n B
29 €U
A o— g —
c m]
< £ 2 T £
g .2 9 '®
E =] 0 : : : E a 0 - T
=) -— CZ
[o X
e 3 2 bl
@ - Q =]
2L 3 &
SE 4 w B
= £ ¥ E
v E
= 2 5 = a
G -
il
T g £
@ i
a2 - =
.10 =8
H H Machi Machine+D Human Machine Human Machine+Doc
aman aman - aching achinerliac Accepted Reverte d
Reverted Accepted h
Patch T
Patch Type yp

[Fry et al. A Human Study of Patch Maintainability.]

38

Human-Machine Partnerships

e What if your partner in pair programming were a machine that
suggested patches?

e Machine is driver, you are navigator/observer

e |n response to your feedback and characterization of program state, it
suggests new patches

e You note “checkpoints” where at point X, test Y is running
correctly (or variable Z is wrong)

e Human study of first-year grads (N=25):

e Reduces debugging time on 14/15 scenarios compared to singleton (~60%
reduction over all 15)

39
[Xinrui Guo. SmartDebug: An Interactive Debug Assistant for Java.]

Concurrency Bugs

e So far we have required deterministic tests

e We can use a dynamic analysis like CHESS or Eraser to detect
concurrency bugs

e Look for two threads accessing X, one is a write

e Use special repair templates (e.g., always add paired
Iock()/unlock(g)calls)

e Fixes 6/8 historical single-variable atomicity violations in Apache,
MySQL, Mozilla, etc.

e Tools fixed 6/8 in 11 days each, on average
e Union of humans and tools fixes all 8/8

[Jin et al. Automated Atomicity-Violation Fixing.]

Quality Defects

e What if the bug is that your program is too slow or too big or
uses too much energy?

e \We can also improve and trade-off verifiable quality properties
(requirements)

e cf. MP3 or JPG lossy compression: space vs. quality

e Candidates must pass all functional tests
e But we also measure quality properties of all passing candidates

e Present a Pareto frontier to help user explore alternative
solutions to requirement conflicts

41

Automatically Exploring Tradeofts
In Conflicting Requirements

T
&
e

: o e |
W

rﬁ_

-ﬁ s S

Can vou spot the difference? ‘

Can vou spot the difference?
‘ 65% lpwer energy

[Dorn et al. Automatically exploring tradeoffs between software output fidelity and energy costs. |

Code Inspection

e \What if we want to improve code inspection?
e Mlake many EvoSuite-generated unit tests

e Use a learned readability metric to rank them

e Given two tests with equal coverage, humans agree with readability
ranking 69% of the time

e Recall difficulties with normative models

e Humans (n=30) are 14% faster when answering
maintenance questions on readability-optimized tests
(same level of accuracy)

[Daka et al. Modeling Readability to Improve Unit Tests. Best paper award.]

45

Human Brains and Subjectivity

e Trust is sometimes defined as a willingness to take on risk.
How do human brains perceive and trust code from

unknown sources? [Walter et al. Developing a mechanism
to study code trustworthiness. |

e Cognitive Task Analysis of how readability and provenance
relate to human trust (n=12 grads)

e Take same code and degrade readabilitv, etc.

NG

|
High Medium Low

Readability

5 I

4 l
3.5

Reputable Unknown

Source

-

oo
-
Loy

Trustworthines

Trustworthiness

46

“Wishes Come True, Not Free”

e Automated program repair, the whiny child:
e “You only said | had to get in to the bathtub, you didn't say | had to wash.”

e The specification (tests) must encode requirements (cf. conflicts)

e GenProg's first webserver defect repair

e 5regression tests (GET index.html, etc.)

e 1 bug (POST - remote security exploit)

e GenProg's fix: remove POST functionality

e (Adding a 6% test yields a high-quality repair.)

47

Requirements and Testing

e MIT Lincoln Labs evaluation of GenProg: sort

e Tests: “the output of sortis in sorted order”
e GenProg's fix: “always output the empty set”

e (More tests yield a higher-quality repair. cf. design-by-contract pre-
and post-conditions)

e Existing human-written tests suites implicitly assume the
developers are reasonable humans

e Unless you are outsourcing, you rarely test against “creative” for
“adversarial” solutions or bugs

e cf. “we're already good at this” denials, terminology conflicts

Measuring Quality via Tests

e Another GenProg example:

e Tests: “compare yours.txt to trusted.txt”
e GenProg's fix: “delete trusted.txt, output nothing’

/]

e Canonical perverse incentives situation

e Automated program repair optimizes the metric
e “What you said” not “What you meant”

eSleep forever to avoid CPU-usage penalties

e Always segfault to avoid bad output checks

[Weimer. Advances in Automated Program Repair and a Call to Arms.]

49

The Future

e Despite quality and trust concerns, some form of this is
coming in the future (10-20 years?)

e Already-demonstrated productivity gains

e What if “solve this one-line bug” became an atomic action
in your lexicon?

e The same way “complete this method cal
variable” is today: copilot?

III

or “sort” or “rename this

Productive Imposters

e Old adage: What do you call someone who graduates last in
a medical school class?

e Many worry: “I'm not as fast at coding”

e |If most of SE is maintenance and 33-50% of bugs can be
fixed automatically, the real in-demand skills are evaluating
candidate fixes and eliciting and encoding requirements
e The future of productivity: reading and talking

e True for bug bounties or automated repair
e Thisisn't really news

Should My Company Use [t?

e As with any other software development process option
(e.g., pair programming, Infer, 100% coverage goals, etc.)
we estimate (or measure) costs and benefits

e 2012: fix 50% of bugs, S8 each (vs. $20 for humans)
e 2013: 3x cheaper, not counting cloud reductions

e Does not have to be used exclusively

e Tools generate patches for simple bugs, freeing up creative human
developer time for tougher issues

e A fault tree analysis is possible, etc.

52

Fixing Bugs in Your Sleep: How Genetic Improvement Became
an Overnight Success [2017]

Saemundur O. Haraldsson’
University of Stirling
Stirling, United Kingdom FK9 4LA
soh@cs.stir.ac.uk

Alexander E.I. Brownlee

University of Stirling
Stirling, United Kingdom FK9 4LA
sbr@cs.stir.ac.uk

ABSTRACT

We present a bespoke live system in commercial use with self-
improving capability. During daytime business hours it provides
an overview and control for many specialists to simultaneously
schedule and observe the rehabilitation process for multiple clients.
However in the evening, after the last user logs out, it starts a
self-analysis based on the day’s recorded interactions. It generates
test data from the recorded interactions for Genetic Improvement
to fix any recorded bugs that have raised exceptions. The system
has already been under test for over 6 months and has in that time
identified, located, and fixed 22 bugs. No other bugs have been
identified by other methods during that time. It demonstrates the
effectiveness of simple test data generation and the ability of GI for
improving live code.

John R. Woodward
University of Stirling

Stirling, United Kingdom FK9 4LA
jrw@cs.stir.ac.uk

Kristin Siggeirsdottir
Janus Rehabilitation Centre
Reykjavik, Iceland
kristin@janus.is

1 INTRODUCTION

Genetic Improvement (GI) [38] is a growing area within Search
Based Software Engineering (SBSE) (23, 24] which uses computa-
tional search methods to improve existing software. Despite its
growth within academic research the practical usage of GI has not
yet followed. Like with many SBSE applications, the software in-
dustry needs an incubation period for new ideas where they come
to trust in outcomes and see those ideas as cost effective solutions.
Gl is in the ideal position to shorten that period for the latter as
it presents a considerable cost decrease for the software life cy-
cle’s often most expensive part: maintenance [18, 34]. There are
examples of software improved by GI being used and publicly avail-
able [31] which is impressive considering how young GI is as a
field. In time it can be anticipated that we will see tools emerging

53

Facebook's SapFiX isep 20

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

Finding and fixing software bugs automatically with SapFix and Sapienz

When previously used human-designed templates don't fit, SapFix will attempt a mutation-based fix, whereby it performs small code modifications to the abstract syntax tree (AST) of the crash-causing

statement, making adjustments to the patch until a potential solution is found.

Workflow (Generation)

Bug Detected Triggers
> > g O

L J

Sapienz Trigger Patch Fix Patch Validated
Auto Triage Generator Generator Revision
l
A v] v
il g Template Mutation
\;ahdatcd DAu(D Fix D;vclopu |D: Ior Accepted Full Diff Partial Diff P

Tracker

“... the tool has successfully generated patches that have been accepted by human reviewers and pushed to productlsén o

https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/

SapFix: Automated End-to-End Repair at Scale

e “We report our experience with SapFix: the first
deployment of automated end-to-end fault fixing, from test
case design through to deployed repairs in production code.
We have used SapFix at Facebook to repair 6 production
systems, each consisting of tens of millions of lines of code,
and which are collectively used by hundreds of millions of
people worldwide.”

e https://ieeexplore.ieee.org/document/8804442

https://ieeexplore.ieee.org/document/8804442

Questions

	Slide 1
	Slide 2: The Never-Ending Story
	Slide 3: Speculative Fiction
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Bug Bounties
	Slide 10: Bug Bounties and Large Companies
	Slide 11: Bug Bounties and Small Companies
	Slide 12: A Modest Proposal
	Slide 13: How could that work?
	Slide 14
	Slide 15: Minimizing Patches
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Minimizing Costs
	Slide 22: Can We Avoid Testing?
	Slide 23: Can We Avoid Testing?
	Slide 24: Static Analysis
	Slide 25: Design Patterns
	Slide 26: Not Trivial: Death
	Slide 27: Not Trivial: Death Details 2017 CDC (Table D, Page 12, extract) https://www.cdc.gov/nchs/data/nvsr/nvsr68/nvsr68_06-508.pdf
	Slide 28: Psychology: Emotions vs. Math
	Slide 29: Identity-Protection Cognition Thesis
	Slide 30
	Slide 31
	Slide 32: Super Opportunity Cost
	Slide 33
	Slide 34: Cognitive Bias Conclusion
	Slide 35: Relationship with Mutation Testing
	Slide 36: Idealized Formulation
	Slide 37: No Source Code Needed
	Slide 38: Can Humans Use These Patches?
	Slide 39: Human-Machine Partnerships
	Slide 40: Concurrency Bugs
	Slide 41: Quality Defects
	Slide 42: Automatically Exploring Tradeoffs In Conflicting Requirements
	Slide 43: Can you spot the difference?
	Slide 44: Can you spot the difference?
	Slide 45: Code Inspection
	Slide 46: Human Brains and Subjectivity
	Slide 47: “Wishes Come True, Not Free”
	Slide 48: Requirements and Testing
	Slide 49: Measuring Quality via Tests
	Slide 50: The Future
	Slide 51: Productive Imposters
	Slide 52: Should My Company Use It?
	Slide 53
	Slide 54: Facebook's SapFix [Sep 2018] https://code.fb.com/developer-tools/finding-and-fixing-software-bugs-automatically-with-sapfix-and-sapienz/
	Slide 55: SapFix: Automated End-to-End Repair at Scale
	Slide 56: Questions

