
Dynamic Analysis

One-Slide Summary

•A dynamic analysis runs an instrumented program in a controlled
manner to collect information which can be analyzed to learn
about a property of interest.

•Computing test coverage is a dynamic analysis.

• Instrumentation can take the form of source code or binary
rewriting.

•Dynamic analysis limitations include efficiency, false positives and
false negatives.

•Many companies use dynamic analyses, especially for hard-to-
test bugs (concurrency).

2

Components of a Dynamic Analysis

• Property of interest
• What are you trying to learn about? Why?

• Information related to property of interest
• How are you learning about that property?

• Mechanism for collecting that information from a program execution
• How are you instrumenting it?

• Test input data
• What are you running the program on?

• Mechanism for learning about the property of interest from the
information you collected
• How do you get from the logs to the answer?

3

How to Transform Source Code?

•Regular Expressions
s/(\w+\(.*\);)/int t=time(); $1 print(time()-
t);/g

•Manually

•Other?

•Benefits?

•Drawbacks?

4

Parsing and Pretty Printing

•Parsing turns program text into an intermediate
representation (abstract syntax tree or control flow graph).
Pretty printing does the reverse.

5

“3+(i*1)”

“3+i*1”

+

*3

i 1parsing

pretty printing

AST Rewriting

•Parsing is a standard technology (CSxxxx Compilers)
• Pretty printers are often written separately
• Visitors, pattern matchers, etc., exist
• You will get a chance to try rewriting ASTs in HW3

6

+

*3

i 1

+

i3

Binary or Byte Code Rewriting

•It is also possible to rewrite a compiled binary, object file or
class file

•Java Byte Code is the Java VM input (.class)
• Stack machine
• Load, push, pop values from variables to stack
• Similar to x86 assembly (but much nicer!)

•Java AST vs. Java Byte Code
• You can transform back and forth (lose comments)

7

Byte Code Example

•Method with a single int parameter
my.Demo.foo(1) becomes:

ALOAD 0
ILOAD 1
ICONST 1
IADD
INVOKEVIRTUAL “my/Demo” “foo” “(I)Ljava/lang/Integer;”
ARETURN

8

JVM Specification

•https://docs.oracle.com/javase/specs/

•You can see the byte code of Java classes with javap or the ASM
Eclipse plugin

•Many analysis and rewrite frameworks. Ex:
• Apache Commons Byte Code Engineering Library
• https://commons.apache.org/proper/commons-bcel/
• “is intended to give users a convenient way to analyze, create, and

manipulate (binary) Java class files (those ending with .class). Classes are
represented by objects which contain all the symbolic information of the
given class: methods, fields and byte code instructions …”

9

https://docs.oracle.com/javase/specs/
https://commons.apache.org/proper/commons-bcel/

Other Approaches

•Virtual machines and emulators
• Valgrind, IDA Pro, GDB, etc.

• Selectively rewrite running code or add special instrumentation (e.g., software
breakpoints in a debugger)

•Metaprogramming
• “Monkey Patching” in Python

•Generic Instrumentation Tools
• Aspect-Oriented Programming

11

Costs and Limitations of Analysis

•Performance overhead for recording
• Acceptable for use in testing?
• Acceptable for use in production?

•Computational effort for analysis

•Transparency limitations of instrumentation
• “Heisenbugs” - a jargon (later in 5 slides)

•Accuracy
• False positives?
• False negatives?

12

Soundness vs. Completeness

•Sound Analyses
• Report all defects → no false negatives
• Typically overapproximate possible bad behavior
• Are “conservative” with respect to safety: when in doubt, say it is

unsafe

•Complete Analyses
• Every reported defect is an actual defect → no false positives
• Typically underapproximate possible bad behavior

13

Are there defects in a program? Positive: "there is a bug, in fact"; negative: "there is no bug,
in fact"

False positive: "there is no bug, but I say there is a bug"

False negative: "there is a bug,
but I say there is no bug"

False Positives, False Negatives

•“You can trust me when I say your
radiation dosing software is safe.”
• Sound Analysis A says P1 is safe → P1 is

actually safe
• But P3 may be safe and A may think it unsafe!

• If P1 is actually safe → Complete Analysis
C says P1 is safe

• But C may say P5 is safe but P5 is actually unsafe!

14

Bad News

•Every interesting analysis is either unsound or incomplete
or both.

Bonus: check "Rice Theorem"

15

Input Dependent

•Dynamic analyses are very input dependent

•This is good if you have many tests
• Whole-system tests are often the best
• Per-class unit tests are not as indicative

•Are those tests indicative of normal use?
• Is that what you want?

•Are those tests specific inputs that replicate known defect
scenarios?
• (e.g., memory leaks or race conditions)

16

Heisenbuggy Behavior

•Instrumentation and monitoring can change the behavior of
a program
• Through slowdown, memory overhead, etc.

•Consideration 1: Can/should you deploy it live?

•Consideration 2: Will the monitoring meaningfully change
the program behavior with respect to the property you care
about?

17

Dynamic Analysis Examples

•Digital Equipment Corporation's Eraser

•Netflix's Chaos Monkey

•Microsoft's CHESS

•Microsoft's Driver Verifier

18

Eraser: Is There A Race Condition?

// Thread #1
while (true) {

lock(mutex);
v := v + 1;
unlock(mutex);
y := y + 1;

}

19

// Thread #2
while (true) {

lock(mutex);
v := v + 1;

unlock(mutex);
y := y + 1;

}

Eraser: Is There A Race Condition?

// Thread #1
while (true) {
lock(mu1);
v := v + 1;
unlock(mu1);
y := y + 1;
lock(mu2);
v := v + 1;
unlock(mu2); }

20

// Thread #2
while (true) {
lock(mu1);
v := v + 1;
unlock(mu1);
y := y + 1;
lock(mu2);
v := v + 1;
unlock(mu2); }

Eraser Insight: Lockset Algorithm

•Each shared variable must be guarded by a lock for the
whole computation. If not, you have the possibility of a race
condition.
• Start with “all locks could possibly protect v”
• If you observe that lock i is not held when you access v, remove lock i

from the set of locks that could possibly guard v
• If the set of locks that could possibly guard v is ever empty, then no

lock can guard v, so you can have a race condition (even if you didn't
actually see the race this time!)

21

Eraser Lockset Example

22

[Savage, Burrows, Nelson, Sobalvarro, Anderson. Eraser: A Dynamic Data Race Detector for Multithreaded Programs. ACM Trans. Comp. Sys. 15(4) 1997.]

Eraser: Does It Work?

•“Applications typically slow down by a factor of 10 to 30
while using Eraser.”

•“It can produce false alarms.”

•Applied to web server (mhttpd), web search indexing
engine (AltaVista), cache server, and distributed filesystem

•One example: cache server is 30KLOC C++, 10 threads, 26
locks
• “serious data race” in fingerprint computation

23

Chaos Monkey

•Chaos Monkey was invented in 2011 by Netflix to test the
resilience of its IT infrastructure

•“Imagine a monkey entering a "data center", these "farms" of
servers that host all the critical functions of our online activities.
The monkey randomly rips cables, destroys devices and returns
everything that passes by the hand. The challenge for IT
managers is to design the information system they are
responsible for so that it can work despite these monkeys, which
no one ever knows when they arrive and what they will destroy.”
– Antonio Martinez, Chaos Monkey

24

Chaos Monkey

•“We have created Chaos Monkey, a program that randomly
chooses a server and disables it during its usual hours of activity.
Some will find that crazy, but we could not depend on the
random occurrence of an event to test our behavior in the face of
the very consequences of this event. Knowing that this would
happen frequently has created a strong alignment among
engineers to build redundancy and process automation to survive
such incidents, without impacting the millions of Netflix users.
Chaos Monkey is one of our most effective tools to improve the
quality of our services.”
• Greg Orzell, Netflix Chaos Monkey Upgraded

25

Simian Army Examples
• Latency Monkey induces artificial delays in our RESTful client-server

communication layer to simulate service degradation

• Conformity Monkey finds instances that don’t adhere to best-practices and
shuts them down (e.g., instances that don’t belong to an auto-scaling group

• Doctor Monkey taps into health checks that run on each instance as well as
monitors other external signs of health (e.g. CPU load) to detect unhealthy
instances and remove them

• 10–18 Monkey (short for Localization-Internationalization) detects
configuration and run time problems in instances serving customers in
multiple geographic regions, using different languages and character sets

26

CHESS

•“CHESS is a tool for finding and reproducing Heisenbugs in
concurrent programs. CHESS repeatedly runs a concurrent
test ensuring that every run takes a different interleaving. If
an interleaving results in an error, CHESS can reproduce the
interleaving for improved debugging. CHESS is available for
both managed and native programs.”

27

CHESS Intuition

•Recall the coupling effect hypothesis:
• A test suite that detect simple faults will likely also detect complex

faults

•Suppose you have some AVL tree balancing or insertion
code with a bug
• There is a size-100 tree that shows off the bug
• Is there also a small tree that shows it off?

28

CHESS Intuition

•Suppose you have a concurrency bug that you can show off
with a complicated sequence of sixteen thread interleavings
and preemptions
• Is there also a sequence of one or two preemptions to show off the

same bug? Likely!

29

CHESS: Does It Work?

• “a lightweight and effective technique for dynamically detecting data races in
kernel modules … oblivious to the synchronization protocols (such as locking
disciplines) … This is particularly important for low-level kernel code … To
reduce the runtime overhead … randomly samples a small percentage of
memory accesses as candidates for data-race detection … uses breakpoint
facilities already supported by many hardware architectures to achieve
negligible runtime overheads … the Windows 7 kernel and have found 25
confirmed erroneous data races of which 12 have already been fixed.”

30
[Erickson, Musuvathi, Burckhardt, Olynyk. Effective Data-Race Detection for the Kernel. OSDI 2010.]

Driver Verifier Overview

•“Driver Verifier is a tool included in Microsoft Windows that
replaces the default operating system subroutines with
ones that are specifically developed to catch device driver
bugs. Once enabled, it monitors and stresses drivers to
detect illegal function calls or actions that may be causing
system corruption.”
• Simulates low memory, I/O problems, IRQL problems, DMA checks,

I/O Request Packet problems, power management, etc.

31

Driver Verifier: Did It Work?

•“The Driver Verifier tool that is included in every version of
Windows since Windows 2000”
•https://support.microsoft.com/en-us/help/244617/using-driver-

verifier-to-identify-issues-with-windows-drivers-for-adva

32

Bonus question: Driver Verifier is a dynamic analysis tool from
Microsoft. What is a static analysis tool from Microsoft that detects
malfunctioning drivers?

https://support.microsoft.com/en-us/help/244617/using-driver-verifier-to-identify-issues-with-windows-drivers-for-adva
https://support.microsoft.com/en-us/help/244617/using-driver-verifier-to-identify-issues-with-windows-drivers-for-adva

Pair Programming and Skill-Based Interviews

The Story So Far …

•We want to deliver and support a quality software product
• We understand the stakeholder requirements
• We understand process and design
• We understand quality assurance
• We somewhat understand humans

•How should we make process and design designs the first
time …

•… in light of how humans work?

34

One-Slide Summary

• There are many programming and development approaches for
improving aspects of software development
• Tackling abstraction, modularity, changing requirements, and software quality

• Agile development focuses on reducing the cost to respond to
requirements change

• Pair programming is a well-studied technique within Agile involving a
driver and a navigator; it increases development time but decreases
defects.

• Skill-based interviews help companies rule out poor-fit employees.
They include both programming and behavioral questions. Interviewees
should show and communicate all aspects of the software engineering
process.

35

A Brief History of Time

•Structured Programming (1950-1960+)
• Structured Programming Theorem (1966)

•Object-oriented Programming (1970-1980+)
• Dominant in 1990+

•Aspect-oriented Programming (1997+)

•Iterative & Incremental Development (1960+)

•Agile Development (2001+)

•Scrum (1986+, 2001+)

49

The What, How And Why

• Structured: structure source code control flow to improve clarity, quality, and
development time

• OO: structure source code by encapsulating data and methods to improve reusability
and modularity

• AOP (Aspect-oriented): structure source code by separating cross-cutting concerns to
increase modularity

• IID (Iterative and incremental): develop software through repeated cycles in small
portions to improve user involvement, reduce variability and development effort

• Agile: develop software through collaborating cross-functional teams, small work
increments and tight feedback loops to …

• Scrum: small teams complete work units in short sprints and hold daily stand-up
meetings to rapidly react to change

51

Common Threads (1/2)

•With respect to software source code

•Abstraction (e.g., inheritance, polymorphism) allows the
same code to be applied to different data
• This saves development and QA effort

•Modularity (e.g., interfaces) permits a separation of
concerns, allowing code both sides of the interface to be
changed independently
• This reduces maintenance (change) effort

52

Common Threads (2/2)

•With respect to software development

•Smaller work increments reduce the effort lost to, and
minimize risk from, changing requirements

•Smaller teams and customer involvement reduce risks
from changing requirements and align software with
stakeholders

•Quality techniques (continuous integration, unit testing,
pair programming, design patterns, refactoring, etc.) assure
quality

53

Agile Development

•Software development is considered agile when the
team requires relatively little time, cost, personnel, and
resources to respond to a requirement change

•Team autonomy: the extent to which the software team
has authority and control in making decisions to carry
out the project

•Team diversity: the extent to which team members have
different functional backgrounds, skills, expertise and
experience

54

Does Agile Work? (1/2)

•“A systematic review of empirical studies of agile software
development up to and including 2005 was conducted. The
search strategy identified 1996 studies, of which 36 were
identified as empirical studies. … We identified a number of
reported benefits and limitations of agile development
within each of these themes. However, the strength of
evidence is very low, which makes it difficult to offer specific
advice to industry.”

•[Dyba and Dingsoyr. Empirical studies of agile software
development: A systematic review.]

55

Does Agile Work? (2/2)

•“Using an integrated research approach that combines
quantitative and qualitative data analyses … of survey
responses of 399 software project managers suggest …
team autonomy has a positive effect on response efficiency
[on-time completion] and a negative effect on response
extensiveness [software functionality], and that team
diversity has a positive effect on response extensiveness.”

•[Lee and Xia. Toward Agile: An Integrated Analysis of
Quantitative and Qualitative Field Data on Software
Development Agility.]

56

Agile Criticism

•“The agile movement is in some ways a bit like a teenager:
very self-conscious, checking constantly its appearance in a
mirror, accepting few criticisms, only interested in being
with its peers, rejecting en bloc all wisdom from the past,
just because it is from the past, adopting fads and new
jargon, at times cocky and arrogant. But I have no doubts
that it will mature further, become more open to the
outside world, more reflective, and therefore, more
effective.”

— Philippe Kruchten, 2011

57

Pair Programming

•Pair programming refers to the practice whereby two
programmers work together at one computer, collaborating
on the same design, algorithm, code, or test.

•The pair is made up of a driver, who actively types at the
computer or records a design; and a navigator (or
observer), who watches the work of the driver and
attentively identifies problems, asks clarifying questions,
and makes suggestions. Both are also continuous
brainstorming partners.

59

One Thousand Words

60

One Thousand Words

61

Pair Programming and Programmers

•Surveys of professional programmers
• 90+% “enjoyed collaborative programming more than solo

programming”
• 95% were “more confident in their solutions” when they pair

programmed

•Increases development cost by 15% to 100% - "absolute
time taken"

62

Pair Programming and Program Quality

• Reduces defects by 15%

• Reduces code size by 15%

• [Cockburn and Williams. The Costs and Benefits of Pair
Programming.]

63

Example Process Decision
(suppose 15% slower coding total, 15% fewer bugs total)

•50,000 LOC program

•Coding at 50 LOC/hour (wait, what?)

•Defect rate of 10 defects / KLOC

•Defect fix time of 10 hours /defect

•As Individuals:
• 1,000 hr coding + 5,000 hr fixing defects = 6,000

•As Pairs:
• 1,150 hr coding + 4,250 hr fixing defects = 5,400

64

Important Math Note

•The total “costs” and “benefits” of pair programming are already
included in the numbers quoted to you
• For example, when we say pair programming increases costs by 15% to

100%, if it's 15%, you do not first multiply by 2 (for the pair) and then
calculate the 15%

• The cost of having two people work is already factored in to the 15% to
100% overhead. So the 100% worst-case is the “multiply by 2”, but the
15% case is “we are magically much faster working together”. That's the
pair benefit!

• Similarly, in the previous slide do not both say “the code is 15% smaller
and then the 15% smaller code has 15% fewer defects on top of that” –
the 15% fewer defects is already the total benefit. No double counting!

65

Pair Programming vs. Education

•North Carolina State University and the University of
California at Santa Cruz, did extensive pair programming
studies with ~1200 beginning computer science students
(CS1) and with ~300 third/fourth year software engineering
students over three year periods
• Students who paired in CS1 were more likely to attempt CS2 (77% vs.

62%)
• Students who paired in CS1 were more likely to major in CS (57% vs.

34% at NCSU, 25% vs. 11% at UCSC, p < 0.01)

66

Trivia:

•This computer scientist, system engineer, and business
owner, was director of the Software Engineering Division of
the MIT Instrumentation Lab, which developed on-board
flight software for NASA's Apollo program. This computer
scientist is one of the people credited with coning the term
“Software Engineering”.

•In Apollo 11 Mission, this computer scientist’s on-board
flight software averted an abort of the landing on the
moon.

68

Trivia:

•This computer scientist, system engineer, and business
owner, was director of the Software Engineering Division of
the MIT Instrumentation Lab, which developed on-board
flight software for NASA/s Apollo program. This computer
scientist is one of the people credited with coning the term
“Software Engineering”.

•In Apollo 11 Mission, this computer scientist’s on-board
flight software averted an abort of the landing on the
moon.

69

Margaret Hamilton

Psychology: Intelligence?

•In psychology, g (general intelligence factor) is a variable
that summarizes positive correlations among cognitive
tasks. It typically accounts for 40-50% of between-individual
performance on many different cognitive tests. The most
widely-accepted modern theories of intelligence
incorporate it.

•Problem: if you are not careful, you mistakenly measure
socioeconomic status (etc.) instead of intelligence.

•Interestingly, g is highly heritable. How?

70

Psychology:
Natural Experiment
•We can study parents, children and cognitive ability … but how

do we help rule out socioeconomic status and parenting choices?

• Identical twins share 100% of their genes

•Fraternal twins share ~50% of their genes

•Twins reared together share certain environmental aspects (e.g.,
religious practices at home)

•Twins reared apart, however … !
• Separated at birth, adopted by different families

71

Psychology: Minnesota Twin Registry

•Tracks over 8,000 twin pairs for use in psychological studies

•Early study by T. Bouchard found that identical twins reared
apart had an equal chance of being similar to their co-twins in
terms of personality, interests, and attitudes as twins reared
together
• Differences must be due to the environment
• Similarities are likely due to genetics,

especially if twins share trait X far more
often than others

72

Psychology: Twins Reared Apart

•70% of variance in IQ was found to be associated with genetic
variation

•On temperament, occupational and leisure-time interests, social
attributes, monozygotic twins reared apart are as similar as
monozygotic twins reared together
• Study carefully controls for SES, pre- and post-reunion contact, parent

education, etc.

•[Bouchard, Lykken, McGue, Segal, Tellegen. Sources of Human
Psychological Differences: The Minnesota Study of Twins Reared
Apart.]

73

Psychology: Heritable Traits

•One interpretation is “biology is destiny”
• Be careful!

•Alternatively (abusing math for clarity), if the correlation of
intelligence between twins is 0.7, the dual is that the
environment and your choices control 30% of it!

•Also: if effective learning environments exist and vary
between individuals, pay attention as a manager when
directing training

75

Typical CS Hiring Process

• Someone at the company, typically a recruiter or an engineer, gets
your resume and puts it into their pipeline
• If they're interested, you'll probably get one or two phone screen interviews
• If you pass the phone screen, you'll probably be invited to interview with the

company on-site
• Depending on the company, you may then have some follow-up phone calls to

find a team to be placed on
• If they offer you a job, you'll negotiate the offer to end up with the best deal

possible
• If this particular offer is the best out of all the offers you've received, you accept!

• This can be spread out as much as several months, or as compact as
two weeks

76

Skill-Based Technical Interview Goals

•“The interview process at Google has been designed (and
redesigned!) from the ground up to avoid false positives.
We want to avoid making offers to candidates who would
not be successful at Google. (The cost of this unfortunately
includes more false negatives, which are times when we
turn down somebody who would have done well.)”

77

Google's Information Needs:
“A Good Fit”
•Are you good at CS? [Skill]

• Can you write and test code?
• Are you someone they want writing code they will use and depend on?
• Can you think on your feet?

•Can you communicate CS concepts? [Behavioral]
• Can you explain your ideas to coworkers?
• Are you someone who would make their team better?

•Are you a nice person? [Behavioral]
• Are you someone they want to work with?
• And are you friendly enough to chat with every day?

78

Interview Format

•“For about 45 minutes you meet with a single technical
interviewer, who will present a programming problem and
ask you to work out one or more solutions to it.”

•Interviewer perspective: “you know in the first ten minutes”

79

A Medium-Difficulty Example
(“The Two-Sum Problem”)

•You are given an array of n integers and a number k.
Determine if there is a pair of elements in the array that
sums to exactly k.

•For example, given the array [1, 3, 7] and k = 8, the answer
is “yes,” but given k = 6 the answer is “no.”

80

Questions You Ask

• Can you modify the array? Yes.

• Do we know something about the range of the numbers in the array? No, they can be
arbitrary integers.

• Are the array elements necessarily positive? No, they can be positive, negative, or
zero.

• Do we know anything about the value of k relative to n or the numbers in the array?
No, it can be arbitrary.

• Can we consider pairs of an element and itself? No, the pair should consist of two
different array elements.

• Can the array contain duplicates? Sure, that's a possibility.

• What about integer overflow? Don't worry about it.

81

Example Solution 1: Brute Force

O(N^2) time, O(1) space
boolean sumsToTarget (int[] arr, int k) {

for (int i = 0; i < arr.length; i++) {
for (int j = i + 1; j < arr.length; j++) {

if (arr[i] + arr[j] == k) {
return true;

} } }
return false;

}

82

Example Solution 2: Hashing

Expected O(N) time, expected O(N) space
boolean sumsToTarget (int[] arr, int k) {
HashSet < Integer > values = new HashSet < Integer

> ();
for (int i = 0; i < arr.length; i++) {

if (values.contains (k – A[i])) return true;
values.add (A[i]);

}
return false;

}
83

Other Solutions
Sort and Binary Search
O(n log n) time, O(log n) to O(1) space

Radix Sort and Walk Inward
O(n log X) time, O(log n) space

boolean sumsToTarget (int[] arr, int k) {

Arrays.radixSort(arr);

int lhs = 0, rhs = arr.length - 1;

while (lhs < rhs) {

int sum = arr[lhs] + arr[rhs];

if (sum == k) return true;

else if (sum < k) lhs++;

else rhs--;

}

return false;

}
84

Were those solutions good?

•What are your thoughts?

85

Software Microcosm

• If you do not convey that you have mastered skill X, they will
assume you have not

•They will assume how you write this program is how you will
write every program

•They are looking for reasons to reject you

•“Saying true things” vs. “Not saying false things”

•Thus, even though the problem is small and simple, you should
show all of the steps of the software engineering process

86

Do Not Forget

•Even though the problem is small, you should
• Perform requirements elicitation
• Ask about functional and quality properties
• Talk about process considerations

• Talk about how you design for maintainability

• Write commented code, including method-level and statement-level
documentation (what/why)

• Write tests that show off corner cases
• Talk about other approaches to QA (within reason)

87

Top 10 Mistakes in Interview Prep
[Gayle McDowell, Cracking the Coding Interview]

• #1 Practicing on a computer

• #2 Not rehearsing behavioral questions

• #3 Not doing a mock interview

• #4 Trying to memorize solutions

• #5 Not solving problems out loud

• #6 Rushing

• #7 Sloppy coding (bad style)

• #8 Not testing

• #9 Fixing mistakes carelessly

• #10 Giving up

88

Behavioral Questions

•What is your greatest weakness?

•Tell me about a time you missed a deadline.

•Tell me about a time you experienced a conflict with a
teammate.

•Very easy to sound unimpressive if you have not practiced!

89

Situation, Action, Result

•Recommendation: structure your responses (especially to
“negative” questions):
• Situation: describe objectively
• Action: what did you do?
• Result: how were things better after?

•Be specific, not arrogant

90

Resume and Interview “Stats”

•Your resume says you worked on XYZ Project. What was the
most challenging aspect of that?
• What did you learn the most from? What was the most interesting?

What was the hardest bug? What did you enjoy the most? What was
the biggest conflict? Most significant requirements change?

•What is the largest program (LOC) you have written?
Modified? What is the largest number of tests you have
written? Worked with? What is the largest team you have
worked with? What is the largest process you automated?
How many customers have you spoken to?

91

What do we know? Little so far!

92

Suggestion

•Remember this “from the other side”

93

