
Before we start

• Exam 1
• Did you get replies from course staff on regrading?

• HW5
• A free grace period for everyone

• No late penalty before March 30

• Thursday lecture relocation (one-off):
• SC4327

• HW6 – Grad
• Meet with the instructor

Delta Debugging

•Given
• a set C = {c1, …, cn} (of changes)
• a function Interesting : C → {Yes, No}
• Interesting(C) = Yes
• Interesting is monotonic, unambiguous and consistent (more on

these later)

•The delta debugging algorithm returns a one-minimal
Interesting subset M of C:
• Interesting(M) = Yes
• For all m in M, Interesting(M \ {m}) = No

2

Example Use of Delta Debugging

•C = the set of n changes

• Interesting(X) = Apply the changes in X to Yesterday's version and
compile. Run the result on the test.

• If it fails, return “Yes” (X is an interesting failure-inducing change set),

• otherwise return “No” (X is too small and does not induce the failure)

3

Useful Assumptions

•Any subset of changes may be Interesting
• Not just singleton subsets of size 1 (cf. bsearch)

•Interesting is Monotonic
• Interesting(X) → Interesting(X {c})

•Interesting is Unambiguous
• Interesting(X) & Interesting(Y) → Interesting(X Y)

•Interesting is Consistent
• Interesting(X) = Yes or Interesting(X) = No
• (Some formulations: Interesting(X) = Unknown)

4

U

U

Delta Debugging Insights

•Basic Binary Search
• Divide C into P1 and P2
• If Interesting(P1) = Yes then recurse on P1
• If Interesting(P2) = Yes then recurse on P2

•At most one case can apply (by Unambiguous)

•By Consistency, the only other possibility is
• (Interesting(P1) = No) and (Interesting(P2) = No)
• What happens in such a case?

5

Interference

•By Monotonicity
• If Interesting(P1) = No and Interesting(P2) = No
• Then no subset of P1 alone or subset of P2 alone is Interesting

•So the Interesting subset must use a combination of
elements from P1 and P2

•In Delta Debugging, this is called interference
• Basic binary search does not have to contend with this issue

6

Interference Insight
(hardest part of this lecture?)

•Consider P1
• Find a minimal subset D2 of P2
• Such that Interesting(P1 D2) = Yes

•Consider P2
• Find a minimal subset D1 of P1
• Such that Interesting(P2 D1) = Yes

•Then by Unambiguous
• Interesting((P1 D2) (P2 D1)) = Yes
• Interesting(D1 D2) is also minimal

7

U

U

U

UU

U

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

8

Example: Use DD to find the smallest
interesting subset of {1, …, 8}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4

• 5 6 7 8

9

First Step:
Partition C = {1, …, 8} into
P1 = {1, …, 4} and P2 = {5, …, 8}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 ???

• 5 6 7 8 ???

10

Second Step:
Test P1 and P2

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

11

Interference! Sub-Step:
Find minimal subset D1
of P1 such that
Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

12

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 ???

13

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 No

14

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 No

• 3 4 5 6 7 8 Yes

15

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}

• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 No

• 3 4 5 6 7 8 Yes

• 3 5 6 7 8 Yes

16

D1 = {3}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 No

• 3 4 5 6 7 8 Yes

• 3 5 6 7 8 Yes

• 1 2 3 4 5 6 Yes

17

D1 = {3}

Now find
D2!

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 No

• 3 4 5 6 7 8 Yes

• 3 5 6 7 8 Yes

• 1 2 3 4 5 6 Yes

• 1 2 3 4 5 No

• 1 2 3 4 6 Yes

18

D1 = {3}
D2 = {6}

Example: {3,6} Is Smallest Interesting Subset
of {1, …, 8}
• 1 2 3 4 5 6 7 8 Interesting?

• 1 2 3 4 No

• 5 6 7 8 No

• 1 2 5 6 7 8 No

• 3 4 5 6 7 8 Yes

• 3 5 6 7 8 Yes

• 1 2 3 4 5 6 Yes

• 1 2 3 4 5 No

• 1 2 3 4 6 Yes

19

D1 = {3}
D2 = {6}

Final Answer:
{3, 6}

Delta Debugging Algorithm

DD(P, {c1, …, cn}) =

• if n = 1 then return {c1}

• let P1 = {c1, … cn/2}

• let P2 = {cn/2+1, …, cn}

• if Interesting(P P1) = Yes then return DD(P,P1)

• if Interesting(P P2) = Yes then return DD(P,P2)

• else return DD(P P2, P1) DD(P P1, P2)

20

U

U

U UU

Algorithmic Complexity

•Best case: a single change induces the failure
• DD is logarithmic: O(log |C|)
• Why?

• Worst case: remove the last change in the list in every
iteration after testing all previous changes
• DD is O(|C|^2): |C|+(|C|-1)+(|C|-2)+….

•Otherwise, DD is linear
• Assuming constant time per Interesting() check

21

Questioning Assumptions
(assumptions are restated here for convenience)

•All three key assumptions are questionable

•Interesting is Monotonic
• Interesting(X) → Interesting(X {c})

•Interesting is Unambiguous
• Interesting(X) & Interesting(Y) → Interesting(X Y)

•Interesting is Consistent
• Interesting(X) = Yes or Interesting(X) = No
• (Some formulations: Interesting(X) = Unknown)

22

U

U

Ambiguity

•Unambiguous: the interesting failure is caused by one
subset (and not independently by two disjoint subsets)

•What if the world is ambiguous?

•Then DD (as presented here) may not find an Interesting
subset

•Hint: trace DD on Interesting({2, 8}) = yes, Interesting({3, 6})
= yes, but Interesting({2, 8} intersect {3, 6}) = no.
• DD returns {2,6} :-(.

23

Not Monotonic

•Montonic: If X is Interesting, any superset of X is interesting

•What if the world is not monotonic?
• For example, Interesting({1,2}) = Yes but Interesting({1,2,3,4}) = No

•Then DD will find an Interesting subset
• Thought questions: Will it be minimal? How long will it take?

24

Inconsistency

• Consistent: We can evaluate every subset to see if it is Interesting or not
• What if the world is not consistent?

• If Interesting can return Unknown -> inconsistent
• DD is quadratic: |C|^2 + 3|C|
• If all tests are Unknown except last one (unlikely)

• Example: we are minimizing changes to a program to find patches that makes
it crash
Some subsets may not build or run!
• Integration Failure: a change may depend on earlier changes
• Construction failure: some subsets may yield programs with parse errors or type checking

errors (cf. HW3!)
• Execution failure: program executes strangely or does not terminate, test outcome is

unresolved

25

DD+ Algorithm

Delta Debugging Thread Schedules

•DejaVu tool by IBM, CHESS by Microsoft, etc.

•The thread schedule becomes part of the input

•We can control when the scheduler preempts one thread

27

Differences in Thread Scheduling

•Starting point
• Passing run
• Failing run

•Differences (for t1)
• T1 occurs in passing run at time 254
• T1 occurs in failing run at time 278

28

Differences in Thread Scheduling

•We can build new test cases by mixing the two schedules to
isolate the relevant differences

29

Does It Work?

•Test #205 of SPEC JVM98 Java Test Suite
• Multi-threaded raytracer program
• Simple race condition
• Generate random schedules to find a passing schedule and a failing

schedule (to get started)

•Differences between passing and failing
• 3,842,577,240 differences (!)
• Each difference moves a thread switch time by +1 or -1

30

DD Isolates One Difference
After 50 Probes (< 30 minutes)

31

Pin-Pointing The Failure

•The failure occurs iff thread switch #33 occurs at yield point
59,772,127 (line 91) instead of 59,772,126 (line 82) → race
on which variable?

32

should be
“Critical
Section”
but is not

Minimizing Input

•GCC version 2.95.2 on x86/Linux
with certain optimizations
crashed on a legitimate C
program
• Note: GCC crashes, not the program!

33

Delta Debugging to the Rescue

•With 731 probes (< 60 seconds), minimized to:

•GCC has many options
• Run DD again to find which

are relevant

34

t(double z[], int n) {
int i, j;
for (;;j++) { i=i+j+1; z[i]=z[i]*(z[0]+0); }
return z[n]; }

https://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/hdd.pdf

Design for
Maintainability

The Story So Far …

•We want to deliver and support a quality software product
• We understand the stakeholder requirements
• We understand process and design
• We understand quality assurance

•How should we make process and design designs the first
time …

… if software maintenance will be the dominant activity?

36

One-Slide Summary

•We can invest up-front effort in designing software to
facilitate maintenance activities. This reduces overall
lifecycle costs.

•We will consider designing to improve comprehension,
documentation, change, reuse, and testability.
• The metrics used for understandability, the category of information

conveyed by documentation, object-oriented principles and design
patterns, and coverage are all relevant.

37

Analogy

•You are playing “Age of Empires 2”

•You want to quickly build a Castle

•Do you just build it now (costs 650 resources)?

•Or do you create villagers first?

• They cost 50 a piece, but each gathers resources
faster (let’s say 1.05x faster)

38

Investment

•“It depends on the state of the world.”

•This is just a math problem: is T1 > T2 ?
• T1 = 650 / resource gathering rate
• T2 = (50/ gathering rate) + (650/(gathering rate*1.05))

•“To invest is to allocate money (or sometimes another
resource, such as time) in the expectation of some benefit
in the future”

•You almost always want to invest time during design to
produce maintainable software!

39

Investment in Maintenance

•Suppose maintenance is 70% of the lifetime cost of
software and the other 30% is coding and design

•Would you spend 50% more on design if that reduced the
cost of maintenance by 50%?

40

Investment in Maintenance

•Suppose maintenance is 70% of the lifetime cost of
software and the other 30% is coding and design

•Would you spend 50% more on design if that reduced the
cost of maintenance by 50%?
• Cost 1 = 30 + 70
• Cost 2 = 30*1.5 + 70*0.5

•We know the 70% number (indeed, 70-90%)

•But can we spend more on design to reduce maintenance
costs? Yes.

41

Design for Maintainability

•High level plan:

•We now understand key maintenance tasks (e.g., testing,
code review, etc.)

•So we should design our software to make those activities
easier or more efficient

•Even if that means that coding will take longer

42

Pride

•The first thing to change is you
• Because you likely still think of yourself as a coder

•Student coder goals: quickly produce
throwaway software that runs efficiently and
solves a well-specified, set-in-stone task
• You feel good if it doesn't take you long, etc.

•You have to change your internal notion of a
“good job”
• You feel good for readable, elegant code, etc.

43

Design for Code Comprehension

•Code Inspection and Code Review are critical maintenance
activities

•We consider improving readability and documentation to
aid code comprehension

•We distinguish between essential complexity, which follows
from the problem statement
• e.g., sorting requires N log(N) time

•and accidental readability, which can be more directly
controlled by software engineers

44

Readability

•Readability is a human judgment of how easy a text is to
understand

•Commonly desired and mandated in software
• DOD MIL-M-38784B requires “10th grade reading level or easier”

•So how can we improve code readability?
• It seems subjective

•Plan: ask many humans, model their average notion of
readability, relate to code features
• Use measurement plus machine learning

45

Learning a Metric
for Code Readability

•Avoid long lines

•Avoid having many different
identifiers (variables) in the same
region of code

•Do include comments

•Fully blank lines may matter more
than indention

46

[Buse et al., 2008]

Revenge of Perverse Incentive

•We can apply readability metrics automatically to code

•But because they are descriptive, this can lead to perverse
incentives

• It may be true that existing code with a few more blank lines is
more readable

•So what if we just insert a blank line between every line of code?
• That would maximize the metric, but …

•So use them, but not blindly

48

Comments and Documentation

•Appeal from a developer on a
mailing list:
• “Going forward, could I ask you to

be more descriptive in your commit
messages? Ideally should state
what you've changed and also why
(unless it's obvious) … I know you're
busy and this takes more time, but
it will help anyone who looks
through the log ...”

49

What vs. Why

•We can make a distinction between documentation that
summarizes what the code does (or what happened in a
commit)
• e.g., “Replaced a warning with an IllegalArgumentException”, “this

loop sorts by task priority”, “added an array bounds check”

•And documentation that summarizes why the code does
that (or the change was made)
• e.g., “Fixed Bug #14235” or “management is worried about buffer

overruns”

50

High-Quality Comments

•You should focus on adding why information to your
documentation, comments and commit messages

•Because there is tool and process support for adding or
recovering what information
• For example, code inspection may reveal that a loop sorts by task

priority but will not reveal that this was done because a customer
required it

51

Documenting Exceptions

•Documentation for @throws information, such as
@exception IllegalArgument if id is null or id.equals(“”)
can be automatically inferred via tools
• Same approach as test input generation
• Gather constraints to reach the “throw” line
• Then rewrite them in English
• Instead of solving them
• Explains What the code does

52

“Why” for Exceptions

•Tools are at least as accurate as humans 85% of the time,
and are better 25% of the time
• Tools can do What – so have humans focus on Why

53
[Automatic Documentation Inference for Exceptions]

Documenting Commit Messages

•Appeal from a developer:
• “Sorry to be a pain in the neck about this, but could we please use

more descriptive commit messages? I do try to read the commit
emails, but... I can't really tell what's going on”

•Example: revision 3909 of iText's complete commit message
is “Changing the producer info”

54

Commit Messages in the Wild

•Average size of a non-empty human written log message:
1.1 lines

•Average size of a textual diff: 37.8 lines

55

“Why” for Commit Messages

•Tools and algorithms have been shown to replace or provide
89% of the What information in log messages

•It is definitely good to describe what a change is doing

•But you should focus on documenting Why

•Get in the habit of providing two categories of information
for every pull request
• (And method summary, and …)

56

Trivia: SCOTUS

•This associate justice of the Supreme Court was born in the
Bronx, went to Princeton and Yale, and was appointed by
Obama. She has been associated with concern for the rights
of defendants, calls for reform of the criminal justice
system, and dissents on issues of race, gender and ethnic
identity. For example, in Schuette vs. CDAA (a case about a
state ban on race- and sex-based discrimination in public
university admissions), she dissented that “[a] majority of
the Michigan electorate changed the basic rules of the
political process in that State in a manner that uniquely
disadvantaged racial minorities.” 57

Trivia: SCOTUS

•This associate justice of the Supreme Court was born in the
Bronx, went to Princeton and Yale, and was appointed by
Obama. She has been associated with concern for the rights
of defendants, calls for reform of the criminal justice
system, and dissents on issues of race, gender and ethnic
identity. For example, in Schuette vs. CDAA (a case about a
state ban on race- and sex-based discrimination in public
university admissions), she dissented that “[a] majority of
the Michigan electorate changed the basic rules of the
political process in that State in a manner that uniquely
disadvantaged racial minorities.” 58

Trivia: Filmmakers

•This Japanese artist was called “the best animation
filmmaker in history” by Roger Ebert. He co-founded Studio
Ghibli, received international acclaim, and directed films
such as Princess Mononoke (highest-grossing film in Japan)
and Spirited Away (also the highest-grossing film in Japan,
and an Academy Award winner). He just might like airships.

59

Psychology: Bridges?

•85 single males, aged 18-35, walked
over either a 450-long, 5-foot wide
suspension bridge made of wooden
boards and wire cables over the
Capilano Canyon, or a solid wood
bridge upriver.
• Similar males rated the bridge a 79 out of

100 on “How fearful ...”

60

Psychology: Bridges

•After crossing either the control or experimental bridge, subjects
were approached by a male or female interviewer
• “She explained that she was doing a project for her psychology class on the

effects of exposure to scenic attractions on creative expression. She then
asked potential subjects if they would fill out a short questionnaire".

•Upon completion she thanked them and then tore off a corner of
a sheet of paper and wrote down her name and phone number,
inviting each subject to call if he wanted to talk further.
• The control group was told her name was Donna and the experimental

group was told her name was Gloria …

61

Psychology: Misattribution of Arousal

•23/33 filled out the questionnaire on the experimental bridge,
22/33 on the control bridge

•The questionnaire contains TAT (Thematic Apperception Test)
pictures, subjects were also asked to write a story based on a
neutral picture
• Experimental group: 2.47 for sexual content/imagery vs. 1.41 in the

control group (p < 0.01)

• In the experiment group, 50% of them called her, while in the
control group, only 12.5% did so (p < 0.02)

•No significant differences between bridges were obtained on
either measure for Ss contacted by a male interviewer.

62[Dutton and Aron. Some evidence for heightened sexual attraction under conditions of high anxiety. J. Personal and Social Psychology. 1974.]

Psychology: Misattribution of Arousal

• The misattribution of arousal is a process whereby people unconsciously
mistake physiological symptoms (e.g., blood pressure, shortness of breath:
symptoms of fear) with arousal. This includes perceiving a partner as more
attractive because of a heightened state of stress.

• Later studies found that confidence can also be affected by misattribution of
arousal. Participants were asked to complete a task with a noise in the
background; some were told the noise might make them nervous, others
were told it would have no effect or that there was a deadline.

• Participants who attributed their arousal to external noise felt more confident than
those who attributed their arousal to performance anxiety of the task

• SE: Crunch time stress may coincidentally cause you to like processes used
during crunch time

63

Design for Change and Reuse

•In class, many programs are written once, to a fixed
specification, and thrown away

•In industry, many programs are written once and then
modified as requirements, customers, and developers
change

•Many fundamental tenets of object-oriented design
facilitate subsequent change
• You've seen these before, but now you are in a position to really

appreciate the motivation!

64

Design Desiderata

• Classes are open for extension and modification without invasive
changes

• Subtype polymorphism enables changes behind interfaces

• Classes encapsulate details likely to change behind (small) stable
interfaces

• Internal parts can be developed independently

• Internal details of other classes do not need to be understood,
contract is sufficient

• Class implementations and their contracts can be tested separately
(unit testing)

65

Design for Reuse: Delegation

•Delegation is when one object relies on another object for
some subset of its functionality
• e.g., in Java, Sort delegates functionality to some Comparator

•Judicious delegation enables code reuse
• Sort can be reused with arbitrary sort orders
• Comparators can be reused with arbitrary client code that needs to

compare integers
• Reduce “cut and paste” code and defects

66

Design for Change: Motivation

•Amazon.com processes millions of orders
each year, selling in 75 countries, all 50
states, and thousands of cities worldwide.
These countries, states, and cities have
hundreds of distinct sales tax policies and,
for any order and destination, Amazon.com
must be able to compute the correct sales
tax for the order and destination. Over time:
• Amazon moves into new markets
• Laws and taxes in existing markets change

67

Software Design Patterns

•A software design pattern is a general,
reusable solution to a commonly-occurring
problem within a given context in software
design.
• (Next lecture discusses more)

68

Design for Extensibility:
Contracts and Subtyping
• Design by contract prescribes that software designers should define formal,

precise and verifiable interface specifications for components, which extend
the ordinary definition of abstract data types with preconditions,
postconditions and invariants

• A subclass can only have weaker preconditions
• My super only works on positive numbers, but I work on all numbers

• A subclass can only have stronger postconditions
• My super returns any shape, but I return squares

• This is just the Liskov Substitution Principle!

• Liskov substitution is a way to prove that system invariants, previously proven, are still
valid when one functionally equivalent component is substituted for another

72

Design for Testability

•If the majority cost of software engineering is maintenance,
and the majority cost of maintenance is QA, and the
majority cost of QA is testing

•It behooves us to design our software so that testing is
effective
• Design to admit testing
• Design to admit fault injection
• Design to admit coverage
• Recognize “free test” opportunities

73

Design to Admit Testing

•Consider a library oriented architecture, a variation of
modular programming or service-oriented architecture with
a focus on separation of concerns and interface design
• “Package logical components of your application independently -

literally as separate gems, eggs, RPMs, or whatever - and maintain
them as internal open-source projects … This approach combats the
tightly-coupled spaghetti so often lurking in big codebases by giving
everything the Right Place in which to exist.”

74

Unit Testing

•Recall: it is hard to generate test inputs with high coverage
for areas “deep inside” the code
• Must solve the constraints for main(), then for foo(), then for bar(),

etc., all at the same time!

•The farther code is from an entry point, the harder it is to
test
• This is one of the motivations behind Unit Testing

•Solution: design with more entry points for self-contained
functionality (cf. AVL tree, priority queue, etc.)

75

Example: Model View Controller

•Suppose you are designing Pokémon Go

•It's a game, and also a simulation, so MVC is a
reasonable choice

•Design so that it can be tested without
someone actually playing the game!
• e.g., have an interface where abstract commands can

be queued up: one way to get them is from the UI, but
another is programmatic

• If we throw a pokeball at angle X and time Y, what is
the likelihood that it will be captured successfully?

76

Fault Injection

•Microsoft's Driver Verifier sat between a driver and the
operating system and “pretended to fail (some of the time)”
to expose poor driver code

•The CHESS project sat between a program and the
scheduler and “forced strange schedules” to expose poor
concurrency code

•Hardware, OS and Networking errors can occur
infrequently, but you still want to test them
• Must design for it!

77

Level Of Indirection

•Old adage: the solution to everything in computer science is
either to add a level of indirection or to add a cache

•Don't have your code call fopen() or cout or whatever
directly

•Instead, add a very thin level of indirection where you call
my_fopen which then calls fopen

•Later add “if coin_flip() then fail else ...” to that indirection
layer to inject faults

78

Designing for Coverage-Based Testing

•Code coverage has many flaws
• At a high level, simple coverage metrics do not align with covering

requirements (cf. traceability)

•Solutions
• Better test suite adequacy metrics (mutation, etc.)
• Design and write the code so that high code coverage correlates with

high requirements coverage!

79

Recall: Implicit Control Flow

•Line coverage was often inadequate because “visit line 5
when ptr==null” could be very different from “visit line 5
when ptr !=null”
• Because “*ptr = 9” is really “if (ptr == null) abort(); else *ptr = 9;”

•Consider explicit conditionals that check requirements
adherence
• To get coverage points for reaching the true branch, the test will have

to satisfy the requirement

80

Requirement Coverage

•Quality requirement: “finish X within Y time”
• Add in “get the time”, “do X”, “get the time”, “subtract”, “if t2 – t1 < Y

then ...”

•You could also encode these in test oracles

•Explicit Conditional Pros
• Testing tools can help you reason about partial progress
• Testing tools can try to falsify claims

•Explicit Conditional Cons
• Muddies meaning of coverage (100% not desired)

81

Tests for Free

•Many programs transform data from one format to another
(cf. adapter pattern)

•If the program is implementing a function with similar
domain and range, you can often get high-coverage tests
“for free” by composing the program with itself
• If possible, design your program so that this is possible (cf. as a

library)

82

Examples

•Inversion
• Forall X. unzip(zip(x)) = x
• Forall X. deserialize(serialize(x)) = x
• Forall X. decrypt(encrypt(x)) = x

•Convergence
• Forall X. indent(indent(x)) = indent(x)
• Forall X. stable_sort(stable_sort(x)) = stable_sort(x)
• Forall P1. Forall I. If P2 = compile(decompile(compile(P1))) then

P1(I)=P2(I)
• mp3enc/mp3dec, jpg2png/png2jpg,

83

Note: you may need a
non-exact comparator!

Questions?

85

	Slide 1: Before we start
	Slide 2: Delta Debugging
	Slide 3: Example Use of Delta Debugging
	Slide 4: Useful Assumptions
	Slide 5: Delta Debugging Insights
	Slide 6: Interference
	Slide 7: Interference Insight (hardest part of this lecture?)
	Slide 8: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 9: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 10: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 11: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 12: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 13: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 14: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 15: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 16: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 17: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 18: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 19: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 20: Delta Debugging Algorithm
	Slide 21: Algorithmic Complexity
	Slide 22: Questioning Assumptions (assumptions are restated here for convenience)
	Slide 23: Ambiguity
	Slide 24: Not Monotonic
	Slide 25: Inconsistency
	Slide 26: DD+ Algorithm
	Slide 27: Delta Debugging Thread Schedules
	Slide 28: Differences in Thread Scheduling
	Slide 29: Differences in Thread Scheduling
	Slide 30: Does It Work?
	Slide 31: DD Isolates One Difference After 50 Probes (< 30 minutes)
	Slide 32: Pin-Pointing The Failure
	Slide 33: Minimizing Input
	Slide 34: Delta Debugging to the Rescue
	Slide 35
	Slide 36: The Story So Far …
	Slide 37: One-Slide Summary
	Slide 38: Analogy
	Slide 39: Investment
	Slide 40: Investment in Maintenance
	Slide 41: Investment in Maintenance
	Slide 42: Design for Maintainability
	Slide 43: Pride
	Slide 44: Design for Code Comprehension
	Slide 45: Readability
	Slide 46: Learning a Metric for Code Readability
	Slide 48: Revenge of Perverse Incentive
	Slide 49: Comments and Documentation
	Slide 50: What vs. Why
	Slide 51: High-Quality Comments
	Slide 52: Documenting Exceptions
	Slide 53: “Why” for Exceptions
	Slide 54: Documenting Commit Messages
	Slide 55: Commit Messages in the Wild
	Slide 56: “Why” for Commit Messages
	Slide 57: Trivia: SCOTUS
	Slide 58: Trivia: SCOTUS
	Slide 59: Trivia: Filmmakers
	Slide 60: Psychology: Bridges?
	Slide 61: Psychology: Bridges
	Slide 62: Psychology: Misattribution of Arousal
	Slide 63: Psychology: Misattribution of Arousal
	Slide 64: Design for Change and Reuse
	Slide 65: Design Desiderata
	Slide 66: Design for Reuse: Delegation
	Slide 67: Design for Change: Motivation
	Slide 68: Software Design Patterns
	Slide 72: Design for Extensibility: Contracts and Subtyping
	Slide 73: Design for Testability
	Slide 74: Design to Admit Testing
	Slide 75: Unit Testing
	Slide 76: Example: Model View Controller
	Slide 77: Fault Injection
	Slide 78: Level Of Indirection
	Slide 79: Designing for Coverage-Based Testing
	Slide 80: Recall: Implicit Control Flow
	Slide 81: Requirement Coverage
	Slide 82: Tests for Free
	Slide 83: Examples
	Slide 85: Questions?

