
Patterns and

Anti-Patterns

Special thanks for James Perretta!

The Story So Far …

• We want to deliver and support a quality software product
• We understand the stakeholder requirements
• We understand process and maintainability
• We understand quality assurance

• How should we make process and design designs the first
time?

14

One-Slide Summary

• Software design patterns are general, reusable solutions
to commonly-occurring problems. They separate the
structure of a system from its implementation. They apply
in almost all OO languages.

• Every design has tradeoffs. Object-oriented design
patterns often trade verbosity or efficiency for
extensibility.

• We'll consider structural, creational and behavioral design
patterns.

15

Patterns in Non-Software Design

16

Further Real-World Reading

• The Design of Everyday Things
• design serves as the communication

between object and user

• although people often blame themselves
when objects appear to malfunction, it is
not the fault of the user but rather the
lack of intuitive guidance that should be
present in the design

• behavioral psych + ergonomics

17

Jargon

• The book popularizing
software design patterns is
often called the Gang of
Four book after its four
authors

• (Sometimes handy for
talking to interviewers or
practitioners.)

18

High-Level Design Pattern Advice

• Consider code change as a certainty
• Redesign is expensive. Choosing the right pattern helps avoid it.

• Consider your requirements and their changes
• Use patterns that fit your current or anticipated needs.

• Consider multiple designs
• Diagram your designs before writing code.

19

Structural Patterns

• Structural design patterns ease design by identifying
simple ways to realize relationships among entities.

• In software, they usually
• Build new classes or interfaces

from existing ones
• Hide implementation details
• Provide cleaner or more

specialized interfaces

20

Adapter Design Pattern

• The adapter design pattern is a structural design pattern
that converts the interface of a class into another interface
clients expect.

21

Adapter Examples (1/2)

• Implementing a Stack interface using a LinkedList interface

22

Stack

- push()

- top()

- pop() LinkedList

- push_front()

- front()

- pop_front()

- push_back()

- back()

- pop_back()

- insert()

Adapter Examples (2/2)

• Early implementations of fstream in C++
• … were simply adapters around the C FILE macro

• The autograder used for this course “securely” runs
student code

• It does this via an adapter around a containerization library
(e.g., docker)

• Handles quirks of the library
• Makes sure that certain options are always used

23

Creational Design Patterns

• Creational design patterns avoid complexity by controlling
object creation so that objects are created in a manner
suitable for the situation. They make a system
independent of how its objects are created.

• A plain constructor may not allow you to
• Control how and when an object is used
• Overcome language limitations (e.g., no default arguments)
• Hide polymorphic types

24

The Named Constructor Idiom

• In the Named Constructor Idiom you declare the class's normal
constructors to be private or protected and make a public static creation
method: intuitive, readable, allow constraints

25

A Common Problem

• Suppose we need to create and use polymorphic objects
without exposing their types to the client

• Recall: design for maintainability and extensibility. We don't want
the client to depend on (and thus “lock in”) the actual subtypes.

• The typical solution is to write a function that creates
objects of the type we want but returns that object so that
it appears to be (“cast to”) a member of the base class

(-> next slide)

26

The Factory Pattern

• The factory method pattern is a creational design pattern that uses factory methods
to create objects without having the return type reveal the exact subclass created.

Payment * payment_factory(string name, string type) {
if (type == “credit_card”)

return new CreditCardPayment(name);
else if (type == “bitcoin”)

return new BitcoinPayment(name);
…

}

Payment * webapp_session_payment =
payment_factory(customer_name, “credit_card”);

27

Factory Pattern Variant

• You may also encounter implementations in which special methods create the right type:

class PaymentFactory {
public:
static Payment* make_credit_payment(string name){
return new CreditCardPayment(name);

}
static Payment* make_bc_payment(string name){
return new BitcoinPayment(name);

}
};

Payment * webapp_session_payment =
PaymentFactory::make_credit_payment(customer_name);

28

Scenario: Difficulty-Based Enemies

• Suppose we're implementing a computer game with a
polymorphic Enemy class hierarchy, and we want to spawn
different versions of enemies based on the difficulty level.

• Normal Difficulty → Goomba

• Hard Difficulty → Spiked Goomba

29

Anti-Patterns

• An anti-pattern is a common response to a recurring problem that is
usually ineffective and risks being counterproductive.

• A bad solution (anti-pattern) would be to check the difficulty at each
of the many places in the code related to spawning enemies:

Enemy* goomba = nullptr;
if (difficulty == “normal”)

goomba = new Goomba();
else if (difficulty == “hard”)

goomba = new SpikedGoomba();

30

Abstract Factory Design Pattern

• The abstract factory pattern encapsulates a group of factories that have a common
theme without specifying their concrete classes.

// Only have to do this once!
AbstractEnemyFactory* factory = nullptr;
if (difficulty == “normal”)

factory = new NormalEnemyFactory();
else if (difficulty == “hard”)

factory = new HardEnemyFactory();
Enemy* goomba = factory->create_goomba();

/

31

Enemy

Goomba

Spiked Goomba

AbstractEnemyFactory
- virtual create_goomba()

NormalEnemyFactory
- override create_goomba()

HardEnemyFactory
- override create_goomba()

Scenario: Global Application State

• Suppose we have some application state that needs to be
globally accessible. However, we need to control how that
data is accessed and updated.

• The anti-pattern (bad) solution is to have a naked global
variable.

• Fails to control access or updates!

• A “less bad” solution is to put all of the state in one class
and have a global instance of that class.

32

Acceptability of
Global Variables
• Global variables are usually a poor design choice. However:

• If you need to access some state everywhere, passing it as a
parameter to every function clutters the code (readability vs. …)

• This is not an argument for using global variables to avoid passing a few
parameters.

• Or if you need to access state stored outside your program (e.g.,
database, web API)

• Then global variables may be acceptable

33

Singleton Design Pattern

• The singleton pattern restricts the
instantiation of a class to exactly one logical
instance. It ensures that a class has only one
logical instance at runtime and provides a
global point of access to it.

34

Singleton
public:
- static get_instance() // named ctor

private:
- static instance // the one instance

- Singleton() // ctor

Singleton Implementation Example: one
instance of billing_database
class Singleton {
// public way to get “the one logical instance”
public static Singleton get_instance() {

if (Singleton.instance == null)
Singleton.instance = new Singleton();

return Singleton.instance;
}
private static Singleton instance = null;

private Singleton() { // only runs once
billing_database = 0;
System.out.println("Singleton DB created");

}

// Our global state
private int billing_database;
public int get_billing_count() {

return billing_database;
}
public void increment_billing_count() {

billing_database += 1;
}

}
35

Single Use Example

• What is the output of this code?

class Main {
public static void main(String[] args) {

int bills = Singleton.get_instance().get_billing_count();
System.out.println(bills);

Singleton.get_instance().increment_billing_count();
spams = Singleton.get_instance().get_billing_count();
System.out.println(spams);

}
}

36

Singleton
public:
- static get_instance() // named ctor

- get_billing_count()
- increment_billing_count() // adds 1

private:
- static instance // the one instance

- Singleton() // ctor, prints message

- billing_database

Single Use Example

• What is the output of this code?

class Main {
public static void main(String[] args) {

int bills = Singleton.get_instance().get_billing_count();
System.out.println(bills);

Singleton.get_instance().increment_billing_count();
spams = Singleton.get_instance().get_billing_count();
System.out.println(spams);

}
}

37

Singleton
public:
- static get_instance() // named ctor

- get_billing_count()
- increment_billing_count() // adds 1

private:
- static instance // the one instance

- Singleton() // ctor, prints message

- billing_database

Output:
Singleton DB created
0
1

Trivia: Toys and Collectibles

• This card game started in 1996 as a simplified spin off of
Magic: The Gathering that featured characters from a
popular cartoon and Japanese manga.

• With nearly 30 billion cards sold as of 2017, it holds 82% of
the card game market share in Europe.

• Gotta catch ‘em all

42

Psychology: Reaction and Information

• How long does it take you to choose from among multiple
stimuli, even when you know the right answer?

• An early experiment presented subjects with a few lamps. Each
lamp was labeled (e.g., A, B, C, etc.). Every five seconds, one of
the lamps would light up. The subject was asked to press the key,
as quickly and as accurately as possible, corresponding to the
lamp that lit up.

• While only one lamp was ever lit, the experimenter varied the
total number of other lamps (e.g., from 2 to 10).

• How does your reaction time vary as a function of the number of
choices?

43

Psychology: Hick's Law

• Given n equally probable choices, the average reaction
time T required for a human to choose among them is: T =
b·log2(n+1)

• b is an empirically-learned constant

• Increasing the number of choices increases decision time
logarithmically. The amount of time taken to process a
certain amount of bits is known as the rate of gain of
information.

44

[Hick, W. E. (1 March 1952). "On the rate of gain of information". Quarterly Journal of Experimental Psychology. 4 (1): 11–26]
[Hyman, R (March 1953). "Stimulus information as a determinant of reaction time". Journal of Experimental Psychology. 45 (3): 188–96.]

Psychology: Hick's Law

• Implications for SE:

• Hick's Law is often used to justify menu design decisions in
human interfaces – from restaurant menus to UI design in
computing. Users given many choices have to take time to
interpret and decide, work they typically don't want (cf.
analysis paralysis, Mac vs. Windows design philosophy,
etc.). Why don't we like voluminous bug-finding tool
output again?

45

Behavioral Design Patterns

• Behavioral design patterns that support common
communication patterns among objects. They are
concerned with algorithms and the assignment of
responsibilities between objects.

• The iterator pattern is a common behavioral design
pattern. It provides a uniform interface for traversing
containers regardless of how they are implemented.

46

Observer Design Pattern

• The observer pattern (also called “publish-subscribe”)
allows dependent objects to be notified automatically
when the state of a subject changes. It defines a one-to-
many dependency between objects so that when one
object changes state, all of it dependents are notified.

50

Subject/Publisher
public:

- subscribe()
- unsubscribe()

Observer/Subscriber
public:

- update()

Observer subscribes to
subject for updates

Subject calls
update() when
state changes

Note: subscribe and unsubscribe can be static or non-static, depending on implementation.

Observer Pattern Exercise
• How many times is “Received update” printed?

51

class Subject {
public static void subscribe(Observer obs) {

subscribers.Add(obs);
}
public static void unsubscribe(Observer obs) {

subscribers.Remove(obs);
}
public static void change_state() {

foreach (Observer obs in subscribers) {
obs.update();

}
}
private static List<Observer> subscribers

= new List<Observer>();
}

class Observer {
public void update() {

Console.WriteLine("Received update");
}

}

class MainClass {
public static void Main(string[] args) {

Observer observer1 = new Observer();
Observer observer2 = new Observer();

Subject.subscribe(observer1);
Subject.change_state();

Subject.subscribe(observer2);
Subject.change_state();

Subject.unsubscribe(observer2);
Subject.change_state();

}
}

Observer “update_” Functions

• Having multiple “update_” functions, one for each type of
state change, keeps messages granular

• Observers that do not care about a particular type of update can
ignore it (via an empty implementation of the update function)

• Generally it is better to pass the newly-updated data as a
parameter to the update function (push) as opposed to
making observers fetch it each time (pull)

54

Scenario: “Likes” In Social Streaming Website

• Suppose we're building a social video
streaming website where both users
and channels can receive likes (for good
comments or good videos). When a
user or channel receives a like, it gets
karma. At 50,000 karma, a channel gets
a trophy. At 50,000 karma, a user gets
ad-free access.

55

Likes: Fist Design

• Note: receive_like is
called on an Actor when
someone likes its
comment or video, etc.

56

Actor
public:
- virtual receive_like()
- apply_karma()
private:
- karma

User
public:
- override receive_like()

Channel
public:
- override
receive_like()

Template Method Design Pattern

• The template method behavioral design pattern involves a
method in a superclass that operates in terms of high-level
steps that are implemented by abstract helper methods
provided by concrete implementations.

• Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template method
design lets subclasses redefine certain steps of that
algorithm without changing the algorithm's structure.

58

Likes: Template Method

59

Actor
public:
- receive_like()
- note_karma()
protected:
- virtual on_50k_karma()
private:
- karma

User
protected:
- override on_50k_karma()

Channel
protected:
- override on_50k_karma()

Likes: Template Method Implementation

60

class Actor {
public void receive_like() {

karma += 1;
if (get_karma() >= 50000)
on_50k_karma();

else
note_karma();

}
protected virtual void on_50k_karma() {}

// Other members same as before
}

class Channel: Actor {
protected override void on_50k_karma() {

Console.WriteLine("Channel trophy!");
}

}

class User: Actor {
protected override void on_death() {

Console.WriteLine("Ad-free access!");
}

}

Exercise

• Suppose we want to add an AffiliateChannel to our setup.
An AffiliateChannel does not receive a trophy on 50,000
karma, but instead received nothing.

• How would we modify our design to include this new
type?

62

Actor
public:

- receive_like()
- note_karma()

protected:
- virtual on_50k_karma()

private:

- karma

User
protected:

- override on_50k_karma()

Channel
protected:

- override on_50k_karma()

Solution

• Suppose we want to add an AffiliateChannel to our setup.
An AffiliateChannel does not receive a trophy on 50,000
karma, but instead received nothing.

• Modify our design to include this new type.

63

Actor
public:

- receive_like()
- note_karma()

protected:
- virtual on_50k_karma()

private:

- karma

User
protected:

- override on_50k_karma()

Channel
protected:

- override on_50k_karma()

AffiliateChannel
Protected:

// this override should be empty
- override on_50k_karma()

	Slide 1
	Slide 14: The Story So Far …
	Slide 15: One-Slide Summary
	Slide 16: Patterns in Non-Software Design
	Slide 17: Further Real-World Reading
	Slide 18: Jargon
	Slide 19: High-Level Design Pattern Advice
	Slide 20: Structural Patterns
	Slide 21: Adapter Design Pattern
	Slide 22: Adapter Examples (1/2)
	Slide 23: Adapter Examples (2/2)
	Slide 24: Creational Design Patterns
	Slide 25: The Named Constructor Idiom
	Slide 26: A Common Problem
	Slide 27: The Factory Pattern
	Slide 28: Factory Pattern Variant
	Slide 29: Scenario: Difficulty-Based Enemies
	Slide 30: Anti-Patterns
	Slide 31: Abstract Factory Design Pattern
	Slide 32: Scenario: Global Application State
	Slide 33: Acceptability of Global Variables
	Slide 34: Singleton Design Pattern
	Slide 35: Singleton Implementation Example: one instance of billing_database
	Slide 36: Single Use Example
	Slide 37: Single Use Example
	Slide 42: Trivia: Toys and Collectibles
	Slide 43: Psychology: Reaction and Information
	Slide 44: Psychology: Hick's Law
	Slide 45: Psychology: Hick's Law
	Slide 46: Behavioral Design Patterns
	Slide 50: Observer Design Pattern
	Slide 51: Observer Pattern Exercise
	Slide 54: Observer “update_” Functions
	Slide 55: Scenario: “Likes” In Social Streaming Website
	Slide 56: Likes: Fist Design
	Slide 58: Template Method Design Pattern
	Slide 59: Likes: Template Method
	Slide 60: Likes: Template Method Implementation
	Slide 62: Exercise
	Slide 63: Solution

