
Requirements and Specifications

Review: Delta Debugging

• Delta Debugging is an automatic algorithm that
• Takes a set of “changes” as input (call it X)

• Changes to source code (git commit diffs)
• Changes to input (line or character diffs to an input file)
• Changes to schedule (timings or # instructions executed per thread)

• Takes an “Interesting(x)” function
• Interesting is “true” if applying diffs in x leads to program failure
• … or if feeding input x leads to failure
• … or if feeding schedule x leads to race conditions

• Produces a one-minimal set as output wrt Interesting
• Delta Debugging helps you minimize test inputs!

Delta Debugging Algorithm

DD(P, {c1, …, cn}) =
• if n = 1 then return {c1}
• let P1 = {c1, … cn/2}
• let P2 = {cn/2+1, …, cn}
• if Interesting(P P1) = Yes then return DD(P,P1)
• if Interesting(P P2) = Yes then return DD(P,P2)
• else return DD(P P2, P1) DD(P P1, P2)

3

U

U

U UU

Assumptions

•All three key assumptions are questionable

•Interesting is Monotonic
• Interesting(X) → Interesting(X {c})

•Interesting is Unambiguous
• Interesting(X) & Interesting(Y) → Interesting(X Y)

•Interesting is Consistent
• Interesting(X) = Yes or Interesting(X) = No
• (Some formulations: Interesting(X) = Unknown)

4

U

U

Moving on to Requirements!
 The Story So Far …
•Quality assurance is critical to software engineering

•OK, so we want to build a quality product

•What are we supposed to be building, again?

7

One-Slide Summary

• Requirements articulate the relationship and interface between a
desired system and its environment.

• Requirement Engineering is the process of identifying, eliciting,
analyzing, specifying, validating and managing the needs and
expectations of stakeholders for a software system.

• We distinguish between functional and quality (or non-functional)
requirements. Both should be stated in measurable ways.

• Requirements can describe variables, inputs, outputs, and
assumptions between them.

• We distinguish between informal statements and verifiable
requirements.

8

9

Requirements

•Requirements say what the system will do, not how it will
do it

•“The hardest single part of building a software system is
deciding precisely what to build. No other part of the
conceptual work is as difficult as establishing the detailed
technical requirements … No other part of the work so
cripples the resulting system if done wrong. No other part
is as difficult to rectify later.”

 — Fred Brooks

10

“Difficult to Rectify Later”

11

Healthcare.gov

12

What is Past is Prologue

•A 1994 survey of 8000 projects at 350 companies found:
31% of projects canceled before completed; 9% of projects
delivered on time, within budget in large companies, 16% in
small companies. (Similar results reported since.)

•Largest Causes:
• Incomplete requirements (13.1%)
• Lack of user involvement (12.4%)
• Lack of resources (10.6%)
• Unrealistic expectations (9.9%)
• Lack of executive support (9.3%)

13

No “programmers were
too inept” or “we forgot
how AVL trees work”

Communication Problem

•Goal: figure out what
should be built
• Express those ideas so

that the correct thing is
built

14

Requirements Brainstorming Example

•You are paying someone to write software for “selling
videos on the web”

•Your thoughts on …
• How fast should we deliver content, at what quality, for what price?
• “Nice to have” functionality
• Required functionality
• Expected qualities
• Involved subproblems

16

Environment vs. Machine

17

Machine DomainEnvironmental Domain

Requirements
Domain Knowledge

Computers
Software ProgramsSpecifications

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.

Environment Software

Input devices
(e.g. sensors)

Output devices
(e.g. actuators)

monitored
variables

input data

output resultscontrolled
variables

Presenter Notes
Presentation Notes
In RE, things customers care about: velocity, has to be fed to representaion in machine domain

Environment vs. Machine
Example: Automobile

18

World Machine

MotorRaising

HandbrakeReleased

DriverWantsToStart motor.Regime = ‘up’

handBrakeCtrl = ‘off’

errorCode = 013

Machine
phenomena

World
phenomena

Shared
phenomena

stateDatabase
updated

Delving into Requirements:
System, Software, Assumptions
•System requirements: relationships between monitored and

controlled variables

•Software requirements: relationship between inputs and
outputs

•Domain properties and assumptions state relationships
between those

20

Lufthansa Flight 2904: Sep 14, 1993

21

Presenter Notes
Presentation Notes
A320-200
Lufthansa Flight 2904 was an Airbus A320-200 flying from Frankfurt, Germany to Warsaw, Poland that overran the runway at Okęcie International Airport on 14 September 1993.
Two of 70 occupants died
Main cause: lack of current wind information at the tower: the assumed crosswind turned out to be a tailwind
Further additional causes involved certain design features of the aircraft. Computer logic prevented the activation of both ground spoilers and thrust reversers until a minimum compression load of at least 6.3 tons was sensed on each main landing gear strut, thus preventing the crew from achieving any braking action by the two systems before this condition was met.
The left gear touched the ground 9 seconds later than the right gear. Because of the design, only after both gears touched the ground did the ground spoilers and the engine thrust reversers start to deploy. Then the wheel brakers were triggered later (4 seconds) after that. However, the remaining length of the runway was already too short. Then the pilot tried to steered the plane off the runway

Lufthansa Flight 2904

•There are two “on ground” conditions:
1. Each shock absorber bears a load of 6300 kgs
2. Both wheels turn at 72 knots (83 mph) or faster

•Ground spoilers activate for conditions 1 or 2
•Reverse thrust only activates for condition 1 on both main

landing gears
•Wheel brake activation depends upon the rotation gain and

condition 2

22

Why Didn't it Stop?
(2 died, 56 injured)

•There is no way for the pilots to override the software
decision manually

•The thrust reversers are only activated if the first condition
is true

•The braking system was not activated
• Condition 1 was not fulfilled because the plane landed inclined (to

counteract crosswind). Thus the required pressure on both landing
gears was not reached.

• Condition 2 was not fulfilled due to a hydroplaning effect on the wet
runway.

23

Requirements Engineering

•Knowledge acquisition: how to capture relevant detail
about a system
• Is the knowledge complete and consistent?

•Knowledge representation: once captured, how do we
express it most effectively
• Express it for whom?
• Is it received consistently by different people?

•You may sometimes see a distinction between the
requirements definition and the requirements specification

35

Requirements Engineering: Typical Process

37

Feasibility Study

38

• Technical Feasibility
• Whether there are correct required resources and technologies that will be

used for project development.
• The technical skills and capabilities of the technical team

• Operational Feasibility
• How easy the product will be to operate and maintain after deployment.

• Economic Feasibility
• Cost and benefit of the project

• Includes all required costs for final development hardware and software resources
required, design and development costs operational costs, and so on

• Whether the project will be beneficial in terms of finance for the organization or not

Requirements Elicitation ?= Requirements Gathering
(I say, YES)

39

• Gain knowledge about the project domain and requirements
• Stakeholder identification and analysis

• Stakeholder: who will be affected by the system, directly or indirectly (e.g., users, clients,
project team, managers, etc.)

• Understand the needs, expectations, and influence of each stakeholder
• Process: interviews, surveys, workshops, prioritize requirements and manage conflicting

interests

Requirements Elicitation ?= Requirements Gathering
(I say, YES)

40

• Gain knowledge about the project domain and requirements
• Problem definition

• Engage the stakeholders in discussion to uncover or articulate the core problems or
opportunities

• Requirement extraction
• Gather detailed requirements from stakeholders
• Process: interviews, surveys, observations, or brainstorming sessions

• Requirement documentation
• Document gathered requirements in a structured format.
• Process: Create requirements documents, use cases, user stories, or prototypes to

capture and communicate requirements effectively.
• Validation and verification:

• Ensure that gathered requirements are accurate, complete, and consistent.
• Process: Conduct reviews, walkthroughs, or use validation tools to verify that the

requirements meet the defined criteria, prototyping to get feedback

Requirement Elicitations ?= Requirements Gathering
(I say, YES)

41

Requirements Specification

42

• Produce formal software requirement models
• Functional requirements
• Non-functional requirements (quality requirements)

• Models
• Entity relationship diagrams (ERDs)
• Dataflow diagrams (DFDs)
• Function decomposition diagrams (FDDs)
• …

Functional Requirements

•Functional requirements describe what the machine should
do (“get the right answer”)
• Input, Output
• Interface
• Response to events

•Criteria
• Completeness: All requirements are documented
• Consistency: No conflicts between requirements
• Precision: No ambiguity in requirements

43

Quality (nonfunctional) Requirements

•Quality requirements specify not the functionality of the
system, but the manner in which it delivers that
functionality

•Can be more critical than functional requirements
• Can work around missing functionality
• Low-quality system may be unusable

•Examples?

44

Framing the Question

•Who is going to ask for a slow, inefficient,
unmaintainable system?

•A better way to think about quality requirements is as
design criteria to help choose between alternative
implementations

•The question becomes: to what extent must a product
satisfy these requirements to be acceptable?

45

Quality Requirement Examples

46

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

Deadline Variability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Expressing Quality Requirements

•Requirements serve as contracts: they should be
testable/falsifiable

•An informal goal is a general intention (e.g., “ease of use”
or “high security”)
• May still be helpful to developers as they convey the intentions of

the system users

•A verifiable non-functional requirement is a statement
using some measure that can be objectively tested

47

Informal vs. Verifiable Example

•Informal goal: “the system should be easy to use by
experienced controllers, and should be organized such that
user errors are minimized.”

•Verifiable non-functional requirement: “Experienced
controllers shall be able to use all the system functions after
a total of two hours training. After this training, the average
number of errors made by experienced users shall not
exceed two per day, on average.”

48

Quality Requirement Examples

•Confidentiality requirement: A non-staff patron may never
know which books have been borrowed by others

•Privacy requirement: The calendar constraints of a participant
may never be disclosed to other invited participants without
consent

•Integrity requirement: The return of book copies shall be
encoded correctly and by library staff only

•Availability requirements: A blacklist of bad patrons shall be
made available at any time to library staff. Information about
train positions shall be available at any time to the vital station
computer.

49

Quality Requirement Examples

• Reliability req: The train acceleration control software shall have a mean time
between failures on the order of 100 hours

• Accuracy req: A copy of a book shall be stated as available by the loan
software if and only if it is actually available on the library shelves. The
information about train positions used by the train controller shall accurately
reflect the actual position of trains up to 4 meters at most. The constraints
used by the meeting scheduler should accurately reflect the real constraints
of invited participants.

• Performance req: Responses to bibliographical queries shall take less than 2
seconds. Acceleration commands shall be issued to every train every 3
seconds. The meeting scheduler shall be able to accommodate up to 9
requests in parallel. The new e-subscription facility should ensure a 30% cost
saving.

50

Requirements Verification and Validation

51

• Verification
• The set of tasks that ensures the software correctly implements a specific

function
• Checking that the requirements are complete, consistent, and accurate.

• Validation
• A different set of tasks that ensures that the software that has been built is

traceable to customer requirements
• Checking that the requirements meet the needs and expectations of the

stakeholders.

• Verification and Validation is an iterative process that occurs
throughout the software development life cycle.

• Testing!

Requirement Management

52

• Analyzing, documenting, tracking, prioritizing, and agreeing on the
requirement and controlling the communication with relevant
stakeholders.

• “the changing nature of requirements. ”
• Activities:

• Tracking and controlling changes
• Version control
• Traceability: linking the requirements to other elements of the development

process, such as design, testing, and validation.
• Communication
• Monitoring and reporting: monitoring the progress of the development

process and reporting on the status of the requirements.

What Could Go Wrong?

55

Types of RE Errors and Flaws
• Omission

• Contradiction

• Inadequacy

• Ambiguity

• Unmeasurability

• Noise, overspecification

• Unfeasibility (wishful thinking)

• Unintelligibility

• Poor structuring, forward references

• Opacity

56

Omission and Contradiction

•Omission: problem/world feature not stated by
any RD item (RD: requirement document)
• e.g., no req about state of train doors in case of

emergency stop

•Contradiction: RD items stating a problem/world
feature in an incompatible way
• “All doors must always be kept closed between

platforms”
• and “All doors must be opened in case of emergency

stop”

57

Inadequacy and Ambiguity

•Inadequacy: RD item not clearly stating a
problem/world feature (“I need more to go on”)
• “Panels inside trains shall display all flights served at next stop”

• (Which panels? Which trains? Display how? What does “served” mean?
Flights vs. Trains?)

•Ambiguity: RD item allowing a problem/world feature
to be interpreted in different ways
• “All doors shall be opened as soon as the train is stopped at

platform”
• (When do you start opening the doors?)

58

RD example

• https://www.indeed.com/career-advice/career-
development/software-requirements-document-example

• https://www.cse.msu.edu/~cse435/Handouts/SRSExample-
webapp.doc

• Many other examples can be found online

https://www.indeed.com/career-advice/career-development/software-requirements-document-example
https://www.indeed.com/career-advice/career-development/software-requirements-document-example
https://www.cse.msu.edu/%7Ecse435/Handouts/SRSExample-webapp.doc
https://www.cse.msu.edu/%7Ecse435/Handouts/SRSExample-webapp.doc

Requirements Engineering: Case Study
• Develop an online ticketing system

• Kind of similar to the Vanderbilt Ticketing system, but you need to allow more
clients (i.e., more than just Vanderbilt) and have both PC and mobile end.

• https://vucommodores.com/mobile-ticketing/

https://vucommodores.com/mobile-ticketing/

Requirements Engineering: Typical Process

61

Requirement Elicitation: Case Study

62

Stakeholders:
Product Manager, users, clients (e.g., Taylor Swift’s team), developer,
operational team leader, designer, sponsor, development manager, legal team,
marketing team, custom service team, product owner, etc.

Quiz-alternative: in-class case study

• Write down your teammates’ NAME, VUID, stakeholder role
• E.g., Yu Huang, huany47, client

	Slide Number 1
	Review: Delta Debugging
	Delta Debugging Algorithm
	Assumptions�
	Moving on to Requirements! �	The Story So Far …
	One-Slide Summary
	Slide Number 9
	Requirements
	“Difficult to Rectify Later”
	Healthcare.gov
	What is Past is Prologue
	Communication Problem
	Requirements Brainstorming Example
	Environment vs. Machine
	Environment vs. Machine�Example: Automobile
	Delving into Requirements:�System, Software, Assumptions
	Lufthansa Flight 2904: Sep 14, 1993
	Lufthansa Flight 2904
	Why Didn't it Stop?�(2 died, 56 injured)
	Requirements Engineering
	Requirements Engineering: Typical Process
	Feasibility Study
	Requirements Elicitation ?= Requirements Gathering�(I say, YES)
	Requirements Elicitation ?= Requirements Gathering�(I say, YES)
	Requirement Elicitations ?= Requirements Gathering�(I say, YES)
	Requirements Specification
	Functional Requirements
	Quality (nonfunctional) Requirements
	Framing the Question
	Quality Requirement Examples
	Expressing Quality Requirements
	Informal vs. Verifiable Example
	Quality Requirement Examples
	Quality Requirement Examples
	Requirements Verification and Validation
	Requirement Management
	What Could Go Wrong?
	Types of RE Errors and Flaws
	Omission and Contradiction
	Inadequacy and Ambiguity
	RD example
	Requirements Engineering: Case Study
	Requirements Engineering: Typical Process
	Requirement Elicitation: Case Study
	Quiz-alternative: in-class case study

