Debugging as
Hypothesis Testing

SORRY,
NO TIME FOR
NON-EMPIRICAL
CHIT-CHAT. T

BECAUSE ITS COLD. ICE WANTS | 1S THAT) LOOK \T UP AND
TO GET WARM, SO \T k&S
TO THE TOP OF LIQUIDS IN
2 ORDER TO BE NEARER TO
THE SUN.

Smfc-comicS.com

The Story So Far ...

e Quality assurance is critical to software engineering.
e Static and dynamic QA approaches are common

e Defect reports are tracked and assigned to developers for
resolution

e Modern software is so huge that simple debugging
approaches do not work

e How should we intelligently and scalably approach
debugging?

One-Slide Summary

e Delta debugging is an automated debugging approach that
finds a one-minimal interesting subset of a given set. It is
very efficient.

e Delta debugging is based on divide-and-conquer and relies
heavily on critical assumptions (monotonicity, unambiguity,
and consistency).

|t can be used to find which code changes cause a bug, to
minimize failure-inducing inputs, and even to find harmful
thread schedules.

18

Debugging Case Study

e Consider this deployment pipeline: Git Server to Jenkins to
GlassFish application server

* You have a known-valid test input (NetBeans git commit) that leads
to an incorrect WAR file

e What would you do to determine which pipeline stage has the bug?

Git Server Jenkins
MNetBeans Git GUI) Jenkins Jenkins GlassFish
Git Commit ® Gt Push - P“:';Zf”e - Hem':'fp‘:"“e“ | Build Job | Deploy Job » WARfile

environment porameter
ie, ‘development’

Real Life Motivation

e Mozilla developers had a large number of open bug reports
in the queue that were not even simplified

eThe Mozilla engineers “faced imminent doom”

e Netscape product management sent out the Mozilla Bug-A-
Thon call for volunteers: people who would help simplify
bug reports.

e Simplify - turn bug reports into minimal test cases, where each part
of the input matters

https://www-archive.mozilla.org/newlayvout/bugathon.html

20

https://www-archive.mozilla.org/newlayout/bugathon.html

Minimizing a Mozilla Bug

e \We want something that can
simplify this large HTML
input to just “<SELECT>"
which causes the crash

eEach character in “SELECT”
is relevant (see 20-26)

| <SELECT_MNAME="priority" MULTIPLE_SIZE=7> X

3 <«SELECT NAME="priori
ME="priority" MULTIPLE_SIZIE=7> #
ty" MULTIPLE_SIZE=7> X

5 <SELECT_NA
t <SELECT, NA
7 <SELECT,é NA
8 CT_NA
5 <SELE

0 <SELECT_NA
11 <SELECT_NA
12 ELECT, £ NA
13 <SELECT_NA
14 <SELECT. NA
15 <SELECT NA
16 <SELECT
17 <SELECT
12 <SELECT
19 <SELECT
m <SELECT
21 <SELECT
22 <SELECT
21 <SELECT
24 <SELECT
25 <SELEC
26 <SELECT

[]
e
[]

L L L L L CIT LT

ty" _MULTIPLE_SIZE=7> v

v

LE _SIZE=7> X
v
LE_SIZE=7> v
LE_SIZE=7> v
ZE=T7> X

v

ZE=T> ¢
ZE=T> ¢
ZE=T7>
ZE=T> ¢
ZE=T7> X

=7> X

> X

>

>

>

>

>

>

>

> X

Often people who encounter a bug spend a lot of time
investigating which changes to the input file will make the bug
go away and which changes will not affect it.

WE DoNT UNDERSTAND
WHAT REAUY CAUSES |
EXEMTS TO KRAPPEN ., /
o BT

HISTORY 1S THE FICTION
WE INVENT TO PERSUADE
OURSELVES THAT BEVENTS
ARE KMOWABLE AND THAT

LIFE HAS ORDER
0

i

A

THATS WHY EVENTS ARE
ALWAS RE\NTERPRETED
HHEM VALJES CTHANGE.
WE NEED NEW VERSIONS
OF HISTORY TO ALLOW FOR
QR CURKENT PREWNMCES.

— Richard Stallman, Using and Porting GNU CC

Fo WHAT
AREE SO\
WRATING ?

A REVISIONIST
ATO BIOGRAPKY

22

Delta Debugging

eThree Problems: One Common Approach
e Simplifying Failure-Inducing Input
e |solating Failure-Inducing Thread Schedules
e |dentifying Failure-Inducing Code Changes

THAT DESIGN IS
ALREADY WIDELY USED
IN THE REAL WORLD.

I CAN COME BACK LATER
IF YOU NEED TIME TO
COMNCOCT ADDITIOMNAL

UNINFORMED

CRITICISMS.

THIS DESIGN WJILL
NMEVER WJORK IN
THE REAL WORLD,

|
rfl—\nf; T

|

Scott Adams, Inc./Dist.

Fo300H Scott Adams, inc./Dist by UFS, Inc.

I‘ _I B

.'] II |

wwwLdilbert.com scotiadama®anl com

=]
o

Failure-Inducing Input

e Having a test input may not be enough

e Even if you know the suspicious code, the input may be too large to
step through

e This HTML input makes a version of Mozilla crash. Which
portion is relevant?

<td align=left valign=top>

<SELECT NAME="op.sys" MULTIPLE SIZE=7>

<OPTION VALUE="All">All<OPTION VALUE="Windows 3.1">Windows 3.1<OPTION VALUE="Windows 95">Windows 95<OPTION VALUE="Windows
98">Windows 98<OPTION VALUE="Windows ME">Windows ME<OPTION VALUE="Windows 2000">Windows 2000<OPTION VALUE="Windows
NT">Windows NT<OPTION VALUE="Mac System 7">Mac System 7<OPTION VALUE="Mac System 7.5">Mac System 7.5<OPTION VALUE="Mac
System 7.6.1">Mac System 7.6.1<OPTION VALUE="Mac System 8.0">Mac System 8.0<OPTION VALUE="Mac System 8.5">Mac System
B8.5<0PTION VALUE="Mac System 8.6">Mac System B.6<OPTION VALUE="Mac System 9.x">Mac System 9.x<OPTION VALUE="MacOS X">MacOS
X<OPTION VALUE="Linux">Linux<OPTION VALUE="BSDI">BSDI<OPTION VALUE="FreeBSD">FreeBSD<OPTION VALUE="NetBSD">NetBSD<OPTION
VALUE="OpenBSD">0penBSD<OPTION VALUE="AIX">AIX<OPTION VALUE="BeOS">BeOS<OPTION VALUE="HP-UX">HEP-UX<OPTION
VALUE="IRIX">IRIX<OPTION VALUE="Neutrino">Neutrino<OPTION VALUE="OpenVMS">OpenVMS<OPTION VALUE="0S/2">0S/2<OPTION
VALUE="0OSF/1">0SF/1<OPTION VALUE="Solaris">Solaris<OPTION VALUE="Sun0S">SunOS<OPTION VALUE="other ">other</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="priority" MULTIPLE SIZE=7>

<OPTION VALUE="--">--<OPTION VALUE="Pl">P1l<OPTION VALUE="P2">P2<OPTION VALUE="P3">P3<OPTION VALUE="P4">P4<OPTION
VALUE="P5">P5</SELECT>

</td>

<td align=left valign=top>

<SELECT NAME="bugseverity" MULTIPLE SIZE=7>

<OPTION VALUE="blocker">blocker<OPTION VALUE="critical">critical<OPTION VALUE="major “>major<OPTION
VALUE="normal“>normal<OPTION VALUE="minor">minor<OPTION VALUE="trivial">trivial<OPTION VALUE="enhancement">enhancement</SELECT>

</tr> 24

</table>

Thread Scheduling

e Multithreaded programs can be non-deterministic
e Can we find simple, bug-inducing thread schedules?

Schedule Thread A Thread B Schedule Thread A Thread B

open("”.htpasswd"”)

open("” .htpasswd")
open(" .htpasswd”)

read(...)

modify(...) read(...)
write{(...) read(...)
close(...) modify(...)
open("” .htpasswd") write(...)
;mﬁgﬁ read(...) close(...)
modify(...) modify(...)
write(...)

write(...)
close(...)

v X 25

close(...)

Code Changes

e A new version of GDB has a Ul bug
e The old version does not have that bug

¢ 178,000 lines of code have been modified between the two
Versions

e Where is the bug?

e These days: continuous integration testing helps
e .. butdoes not totally solve this. Why?

diff -r gdb-4.16/gdb/infecmd.c gdb-4.17/gdb/infomd.c
12391278
< "5et arguments to give program belng debugged when 1t 1s started.\n

> "Set argument list to give program being debugged when it 1s started.'\n

26

What is a Difference?

e With respect to debugging, a difference is a change in the
program configuration or state that may lead to alternate

observations

Difference in the input: different character or bit in the input stream
Difference in thread schedule: difference in the time before a given

thread preemption is performed
Difference in code: different statements or expressions in two

versions of a program
Difference in program state: different values of internal variables

Unified Solution
e Abstract Debugging Problem:

e Find which part of something (= which difference, which input, which
change) determines the failure

e “Find the smallest subset of a given set that is still interesting”

e Divide and Conquer

e Applied to: working and failing inputs, code versions, thread
schedules, program states, etc.

28

Yesterday, My Program Worked
Today, It Does Not

v = = e = =5 X
—\v‘—l
Yesterday n changes Today

e We will iteratively

e Hypothesize that a small subset is interesting
e Example: change set{1,3,8} causes the bug

e Run tests to falsify that hypothesis

Delta Debugging

e (Glven

e asetC={c,, .., c,}(of changes)
e a function Interesting: C - {Yes, No}
e |nteresting(C) = Yes

Interesting is monotonic, unambiguous and consistent (more on
these later)

eThe delta debugging algorithm returns a one-minimal
Interesting subset M of C:

e |nteresting(M) = Yes
e Forallmin M, Interesting(M \ {m}) = No

30

Example Use of Delta Debugging

v —> — L =) 4
—‘f—
Yesterday n changes Today

e C = the set of n changes

e Interesting(X) = Apply the changes in X to Yesterday's version and
compile. Run the result on the test.

e |f it fails, return “Yes” (X is an interesting failure-inducing change set),
e otherwise return “No” (X is too small and does not induce the failure)

Naive Approach

e We could just try all subsets of C to find the smallest one
that is Interesting

e Problem: if |[C| =N, this takes 2N time
e Recall: real-world software is huge

* \We want a polynomial-time solution

e |deally one that is more like log(N)
e Or we'll loop for what feels like forever

Algorithm Candidate

* /* Precondition: Interesting({c, ... ¢,}) = Yes */
* DD({cy, ..., €, }) =

* if n=1then return {c}

* letPl={cy,..cp,}

* let P2 ={c,/p.1, --s Cn}

: : So far, this is
* if Interesting(P1) = Yes just binary search!
* then return DD(P1) It won't work if
you need a big
* else return DD(P2) subset to be

Interesting.

Useful Assumptions

e Any subset of changes may be Interesting
e Not justsingleton subsets of size 1 (cf. bsearch)

e |nteresting is Monotonic
e |nteresting(X) - Interesting(X v {c})

e nteresting is Unambiguous
e |nteresting(X) & Interesting(Y) - Interesting(X nY)

e |nteresting is Consistent

e |nteresting(X) = Yes or Interesting(X) = No
e (Some formulations: Interesting(X) = Unknown)

Delta Debugging Insights

e Basic Binary Search

e Divide Cinto P1 and P2
e |f Interesting(P1) = Yes then recurse on P1
e |f Interesting(P2) = Yes then recurse on P2

e At most one case can apply (by Unambiguous)

e By Consistency, the only other possibility is

e (Interesting(P1) = No) and (Interesting(P2) = No)
e What happens in such a case?

Interference

e By Monotonicity
e |f Interesting(P1) = No and Interesting(P2) = No
e Then no subset of P1 alone or subset of P2 alone is Interesting

*So the Interesting subset must use a combination of
elements from P1 and P2

e|n Delta Debugging, this is called interference
e Basic binary search does not have to contend with this issue

Interference Insight

(hardest part of this lecture?)

e Consider P1

e Find a minimal subset D2 of P2
e Such that Interesting(P1 uD2) = Yes

e Consider P2

e Find a minimal subset D1 of P1
e Such that Interesting(P2uD1) = Yes

eThen by Unambiguous

e |nteresting((P1uD2) n(P2uD1)) = Yes
e |nteresting(D1uD?2) is also minimal

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?

Example: Use DD to find the smallest
interesting subset of {1, ..., 8}

46

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}
el 2 3 4 5 6 7 8 Interesting?

1 2 3 4
. ‘* 5 6 7 8

First Step:
Partition C = {1, ..., 8} into
P1={1, ..., 4} and P2 = {5, ..., 8}

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?
1 2 3 4 277

. 5 6 7 8 1?77

/
Second Step:
Test P1 and P2

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}
el 2 3 4 5 6 7 8 Interesting?

*l1 2 3 4 No
. 5 6 7/ 3 No

Interference! Sub-Step:
Find minimal subset D1
of P1 such that
Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}
el 2 3 4 5 6 7 8 Interesting?

*l1 2 3 4 No
. 5 6 7/ 3 No

Interference! Sub-Step:
Find minimal subset D1 of P1

such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?

*1 2 3 4 No
. 5 6 7/ 3 No

1 2 5 6 7/ 3 2?7

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?
1l 2 3 4 No
. 5 6 7 8 No
1 2 5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?
1l 2 3 4 No

. 5 6 7 8 No

el 2 5 6 7 8 No

. 3 4 5 6 7 8 Yes

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

*l1 2 5 6 7 8 No

. 3 4 5 6 7/ 3 Yes

. 3 5 6 7/ 3 Yes

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

el 2 3 5 6 7 8 Interesting?

el 2 3 No

. 5 6 7 8 No DT=
°l1 2 5 6 /7 8 No Now find
. 3 5 6 7 8 Yes D2!

. 3 5 6 7/ 3 Yes

]l 2 3 5 6 Yes

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}
o | 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No
5 6 7 8 No D1 = {3}
1 2 5 6 7 8 No D? = {6}
3 4 5 6 7 3 Yes
3 5 6 7 3 Yes
1 2 3 4 5 6 Yes
1 2 3 4 5 No
1 2 3 4 6 Yes

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}
o | 2 3 5 6 7 8 Interesting?
1 2 3 No
5 6 7 8 No D1 = {3}

e1 2 5 6 7 8 NoO D2 = 16;

3 5 6 7/ 3 Yes

; c . . o Vo Final Answer:
e] 2 3 5 6 Yes {3’ 6}
1 2 3 5 No
e 1 2 3 6 Yes

Delta Debugging Algorithm

DD(P, {c,, ..., C,}) =

if n =1 then return {c,}

Et D1 - {Cl’ Y Cn/z}

et P2 ={C,/511, - Cp}

if Interesting(PyP1) = Yes then return DD(P,P1)
if Interesting(PyP2) = Yes then return DD(P,P2)
else return DD(PyP2, P1) , DD(P,P1, P2)

Algorithmic Complexity

e Best case: a single change induces the failure
e DDis logarithmic: O(log |C|)
e Why?
e Worst case: remove the last change in the list in every
iteration after testing all previous changes
e DDisO(|C|”2): |C|+(]|C|-1)+(]|C]|-2)+....

Questioning Assumptions

(assumptions are restated here for convenience)

e All three key assumptions are questionable

e |nteresting is Monotonic
e |nteresting(X) - Interesting(X , {c})

e Interesting is Unambiguous
e |nteresting(X) & Interesting(Y) - Interesting(X nY)

e |nteresting is Consistent

e |nteresting(X) = Yes or Interesting(X) = No
e (Some formulations: Interesting(X) = Unknown)

Ambiguity

e What if the world is ambiguous?

eThen DD (as presented here) may not find an Interesting
subset

eHint: trace DD on Interesting({2, 8}) = yes, Interesting({3, 6})
= yes, but Interesting({2, 8} intersect {3, 6

e DD returns {2,6} :-(.

Not Monotonic

\ /1 A\ ala d alvalada .. a '\)) ; alvalada a
¥y I \.J \.J .. \ LA RNJ \.J

e\What if the world is not monotonic?
e For example, Interesting({1,2}) = Yes but Interesting({1,2,3,4}) = No

eThen DD will find an Interesting subset
e Thought questions: Will it be minimal? How long will it take?

Inconsistency

L] L] L] L]
N N NN o N/ O allia alll a a a a a N O a a a a
J v C v O v v v -

e Whatif the world is not consistent?

e |f Interesting can return Unknown -> inconsistent
e DD is quadratic: |C|"*2+ 3|C]|
e |f all tests are Unknown except last one (unlikely)

. Exam;ﬂe: we are minimizing changes to a program to find patches that makes
It cras

Some subsets may not build or run!
e Integration Failure: a change may depend on earlier changes

e Construction failure: some subsets may yield programs with parse errors or type checking
errors (cf. HW3!)

e Execution failure: program executes strangely or does not terminate, test outcome is
unresolved

DD+ Algorithm

Yesterday, my program worked.
Today, it does not. Why?

Andreas Zeller

Universitat Passau

Lehrstuhl fur Software-Systeme
Innstralle 33, D-94032 Passau, Germany
zeller@acm.org

Delta Debugging Thread Schedules

e DejaVu tool by IBM, CHESS by Microsoft, etc.

The thread schedule becomes part of the input

e \We can control when the scheduler preempts one thread

replay

¥ ™
FYry ¥ '3
b () =
Segih -% \L_.-
5 " ol
Feprt

v

replay

e
L T._
. : X
2 {:Z .
b = |
L A r
i F
Y {
_—]
L

65

Differences in Thread Scheduling

eStartingpoint W ... 1
e Passingrun $
e Failing run $ --------
e Differences (for t1)
e T1 occurs in passing run at time 254
e T1 occurs in failing run at time 278 v
v

66

Differences in Thread Scheduling

e \We can build new test cases by mixing the two schedules to
isolate the relevant differences

)
\'4
—_— P
v/ X

67

Does It Work?

e Test #205 of SPEC JVM98 Java Test Suite

e Multi-threaded raytracer program
e Simple race condition
e Generate random schedules to find a passing schedule and a failing

schedule (to get started)
e Differences between passing and failing

e 3,842,577,240 differences (!)
e Each difference moves a thread switch time by +1 or -1

D Isolates One Differe

nCce

fter 50 Probes (< 30 mi

Delta Debugging Log

nutes)

1e+14d T
L S]
gj| swammmmm
1e+13 =
S
@ -
g ll:
1e+12
IIE
:---‘
LT
Farm
0 5 10 15 20 25 30 35 4q 45 50

Tesis executed

69

Pin-Pointing The Failure

e The failure occurs iff thread switch #33 occurs at yield point
59,772,127 (line 91) instead of 59,772,126 (line 82) - race
on which variable?

25 public class Scene { ...

44
45
a1
B2
B4
85
o1
92
130
131

132
134
135
733

private static int ScenesLoaded = 0;

(more methods. ..)

private

int LoadScene(String filename) | N
int q;qsganFsLnaded = ScenesLoaded; should be
(more initializations. . .) e
infile = new DataInputStream(...); CﬂpcﬂE
(more code. . .) Sec@on
ScenesLoaded = 0OldScenesLoaded + 1; P but is not
System.out.println("" +

SceneslLoaded + " scenes loaded.");

70

double mult(double z[], int mn)
{

int 1;

int j;

for (j= 0; j< m; j++) {

Minimizing Input

return z[n];

® GCC Ve r‘Sion 2.95.2 On X86/Linux int copy(double to[l, double from[], int count)
int n= (count+7)/8;

with certain optimizations svitch (coumtis) do 1

ey

case 0: sto++ = xfrom++;
crashed on a legitimate C caso T: stors - ixumss;
case b: *to++ = *from++;
program e st oo i
case 2: *to++ = *from++;
e Note: GCC crashes, not the program! S e

} while (--m > 0);

return (int)mult(te,2);
}
int main(int argc, char #argv[])
{

double x[20], y[20];

double #*px= x;

while (px < x + 20)
px++ = (px-x)(20+1.0);

return copy(y,x,20);

Figure 4: A program that crashes GCC-2,95.2.

Delta Debugging to the Rescue

e With 731 probes (< 60 seconds), minimized to:
t(double z[], int n) {
int 1, j;
for (;;j++) { i=i+j+1; z[i]=z[i]*(z[@]+0); }
return z[n]; }

° G C C h dS Md ny O pt 10NS —ffloat-store —fno-default-inline —fno-defer-pop

—fforce-mem ~fforce-addr —fomit-frame-pointer

Run DD agaln to find which —fno-inline ~finline-functions —fkeep-inline-functions

are relevant -;/Z(eep-sfc‘znc-c*on.ws »jffiojfunc.llon-cse i—/“{‘asf-lnc’th |
—fstrength-reduce —fthread-jumps —fese-follow-jumps
—fese-skip-blocks —frerun-cse-after-loop —frerun-loop-opt
—fgcse —fexpensive-optimizations —fschedule-insns
—fschedule-insns2 —ffunction-sections —fdata-sections
—fealler-saves —funroll-loops —funroll-all-loops
~fmove-all-movables —freduce-all-givs ~fno-peephole

https://www.cs.purdue.edu/homes/xyzhang/spring07/Papers/hdd.pdf —fstrict-aliasing
N

Go Try It Out: Eclipse Integration

Automated Debugging in Eclipse

We realized two Eclipse plug-ins that automatically determine why your program fails:

+ |n the input and
* In the program history.

These plug-ins integrate with JUnit tests: As soon as a test fails, they automatically determine the
fallure cause. You don't even have to press a button—just wait for the diagnosis.

DDinput: Failure-Inducing Input
Find out which part of the input causes your program to fail:

The program fails when the input contains <SELECT=.

This plug-in applies Delta Debugging to program inputs, as described in Simplifying and Isolating
Failure-Inducing Input.

Available for download.

DDchange: Failure-Inducing Changes

Find out which change causes your program to fail:
The change in Line 45 makes the program fail.

This plug-in applies Delta Debugging to program changes, as described in Yesterday, my program

worked. Today, it does not. Why?. 23

Available for download.

Questions?

e Thursday

e Review session: HwW5 + Hw6

e HWG6b

e No GP is allowed
e NO EXTENSION and LATE POLICY EVER: you are late, you get O

74

	Slide 16
	Slide 17: The Story So Far …
	Slide 18: One-Slide Summary
	Slide 19: Debugging Case Study
	Slide 20: Real Life Motivation
	Slide 21: Minimizing a Mozilla Bug
	Slide 22
	Slide 23: Delta Debugging
	Slide 24: Failure-Inducing Input
	Slide 25: Thread Scheduling
	Slide 26: Code Changes
	Slide 27: What is a Difference?
	Slide 28: Unified Solution
	Slide 29: Yesterday, My Program Worked Today, It Does Not
	Slide 30: Delta Debugging
	Slide 31: Example Use of Delta Debugging
	Slide 32: Naïve Approach
	Slide 33: Algorithm Candidate
	Slide 34: Useful Assumptions
	Slide 35: Delta Debugging Insights
	Slide 36: Interference
	Slide 37: Interference Insight (hardest part of this lecture?)
	Slide 46: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 47: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 48: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 49: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 50: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 51: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 52: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 53: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 54: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 55: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 56: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 57: Example: {3,6} Is Smallest Interesting Subset of {1, …, 8}
	Slide 58: Delta Debugging Algorithm
	Slide 59: Algorithmic Complexity
	Slide 60: Questioning Assumptions (assumptions are restated here for convenience)
	Slide 61: Ambiguity
	Slide 62: Not Monotonic
	Slide 63: Inconsistency
	Slide 64: DD+ Algorithm
	Slide 65: Delta Debugging Thread Schedules
	Slide 66: Differences in Thread Scheduling
	Slide 67: Differences in Thread Scheduling
	Slide 68: Does It Work?
	Slide 69: DD Isolates One Difference After 50 Probes (< 30 minutes)
	Slide 70: Pin-Pointing The Failure
	Slide 71: Minimizing Input
	Slide 72: Delta Debugging to the Rescue
	Slide 73: Go Try It Out: Eclipse Integration
	Slide 74: Questions?

