
Fault Localization and Profiling

The Story So Far …

•Quality assurance is critical to software engineering.
• Static and dynamic QA approaches are common

•Defect reports are tracked from creation to resolution

•Some are assigned to developers for resolution

•How do we know which part of a program to change to
repair a bug or improve a program?

2

One-Slide Summary

•A debugger helps to detect the source of a program error by
single-stepping through the program and inspecting variable
values.

•Fault localization is the task of identifying lines implicated in a
bug. Humans are better at localizing some types of bugs than
others.

•Automatic tools can help with the dynamic analyses of fault
localization and profiling.

•Care must be taken when evaluating such tools (and their
assumptions) for real-world use.

3

Outline

•Software Scales

•Manual Debuggers

•Human Study Results

•Automatic Tools

•Profilers

•Are Tools Helping?

4

Quick Quiz: Which of these is photoshopped?

6

Presenter Notes
Presentation Notes
neither

Bucket-Wheel Excavators

•Heaviest land vehicles
• ~14,000 tons

• (avg USA car: 2 tons)
• Mobile strip-mining

7

Presenter Notes
Presentation Notes
It is something for real.
It is huge, even if you know how cars, machines work, you don’t know how to fix problems when it becomes so big. Similarly, even you know how to fix bugs in small programs, you don’t how when it comes so big

Modern Software Is Huge?

9

Presenter Notes
Presentation Notes
The Hitchhiker's Guide to the Galaxy[a][b] is a comedy science fiction franchise created by Douglas Adams.

The broad narrative of Hitchhiker follows the misadventures of the last surviving man, Arthur Dent, following the demolition of the Earth by a Vogon constructor fleet to make way for a hyperspace bypass. Dent is rescued from Earth's destruction by Ford Prefect—a human-like alien writer for the eccentric, electronic travel guide The Hitchhiker's Guide to the Galaxy—by hitchhiking onto a passing Vogon spacecraft. Following his rescue, Dent explores the galaxy with Prefect and encounters Trillian, another human who had been taken from Earth (before its destruction) by the self-centred President of the Galaxy Zaphod Beeblebrox and the depressed Marvin the Paranoid Android. Certain narrative details were changed among the various adaptations.

Example Programs: < 1MLOC

• libpng: 85,000 jfreechart: 300,000

10

Example Programs: 5-10 MLOC

11

Example Programs: 25 – 50 MLOC

12

Example Programs: 50 – 100 MLOC

13

Example Programs: 0.1 – 2.0BLOC

14

Modern Software Is Huge!
•Who cares?

• Techniques developed based on smaller code bases simply do not
apply or scale to larger code bases

• Techniques from the 1980s or your habits from classes

15

Presenter Notes
Presentation Notes
The Hitchhiker's Guide to the Galaxy[a][b] is a comedy science fiction franchise created by Douglas Adams.

The broad narrative of Hitchhiker follows the misadventures of the last surviving man, Arthur Dent, following the demolition of the Earth by a Vogon constructor fleet to make way for a hyperspace bypass. Dent is rescued from Earth's destruction by Ford Prefect—a human-like alien writer for the eccentric, electronic travel guide The Hitchhiker's Guide to the Galaxy—by hitchhiking onto a passing Vogon spacecraft. Following his rescue, Dent explores the galaxy with Prefect and encounters Trillian, another human who had been taken from Earth (before its destruction) by the self-centred President of the Galaxy Zaphod Beeblebrox and the depressed Marvin the Paranoid Android. Certain narrative details were changed among the various adaptations.

Humans Are Poor At
Comprehending Large Scales
•libpng 85 000
•google 2 000 000 000
•Imagine that there is a bug somewhere, anywhere, in libpng
•You can find it in a minute (assume!)!
•At that same rate, it will take you more than two weeks to

find it in all of google
• A one-hour bug on libpng is three years on google
• Unless we do things differently …

16

Fault Localization

•Fault localization is the task of identifying source code regions
implicated in a bug
• “This regression test is failing. Which lines should we change to fix

things?”

•Answer is not unique: there are often many places to fix a big
• Example: check for null at caller or callee?

•Debugging includes fault localization

•Answer may take the form of a list (e.g., of lines) ranked by
suspiciousness

17

What is a Debugger?

• “A software tool that is used to detect the source of
program or script errors, by performing step-by-step
execution of application code and viewing the content of
code variables.”

• - Microsoft Developer Network

18

Debuggers

•Can operate on source code or assembly code
•Inspect the values of registers, memory
•Key Features (we’ll explain all of them)

• Attach to process
• Single-stepping
• Breakpoints
• Conditional Breakpoints
• Watchpoints

19

How to design a basic debugger?

Signals

•A signal is an asynchronous notification sent to a process
about an event; A software interrupt delivered to a process by
OS.
• User pressed Ctrl-C (or did kill %pid)

• Or asked the Windows Task Manager to terminate it

• Exceptions (divide by zero, null pointer)
• From the OS

•You can install a signal handler – a procedure that will be
executed when the signal occurs.
• Signal handlers are vulnerable to

 race conditions. Why? 21

Presenter Notes
Presentation Notes
To build a debugger (all the features in the previous slide), you will need some signals (provided by OS). "asynchronous" because it happens by events, there is no clock
SIGPIPE triggers when you write to a pipe or fifo that doesn’t have a reading process
signal handlers are vulnerable to race conditions. Why?: because they're asynchronous, you don't know how long after the signal is sent that your process actually handles it, especially when it is multithreaded

Signal Example
•What does this program print?

• SIGSEGV
• Signal for segmentation fault

• Signal()
• Specifies a function to be executed

when the program receives a given
signal.

22

#include <stdio.h>
#include <signal.h>

int global = 11;

int my_handler() {
 printf("In signal handler, global = %d\n",global);

 exit(1);
}

void main() {
 int * pointer = NULL;

 signal(SIGSEGV, my_handler) ;

 global = 33;

 * pointer = 0;

 global = 55;

 printf("Outside, global = %d\n", global);
}

Presenter Notes
Presentation Notes
33
SIGSEGV – signal for segmentation fault. All the signals your OS handles for a process is listed by "kill -l"
For each program, there is function pointer table for all of the signals that can happen (defined by OS by default).
Usually by default, SIGSEGV will dump the core and abort the program. Here signal() replaces the defaulted signal handler for SIGSEGV by your own my_handler.
Int *pointer = null --- innitiating a null pointer, the value of the pointer (not the content the pointer points to, but the value of the pointer itself), which is an address, is 0
*pointer = 0 -- *pointer is to dereference this pointer, and then assign the value 0 to the content the pointer points to. So basically, you are asking to OS to read the memory address 0. - SEGFAULT

Attaching A Debugger

•Requires operating system support
•There is a special system call that allows one process to act

as a debugger for a target
• What are the security concerns?

•Once this is done, the debugger can basically “catch signals”
delivered to the target
• This isn’t exactly what happens, but it’s a good explanation …

23

Presenter Notes
Presentation Notes
A debugger itself is also a process
Special system call: depends on which OS. It allows you to attach one process to another.
Security concerns: debugger gets full access to the process.
Actually, modern debuggers relies on hardware. you need signals only when you run out of resigesters (there are a limited number of registers just for debugging).
Even with hardware, they also "catch breakpoints" with the hardware (you store the breakpoint addr in the register, OS generates a signal when the addr is reached, OS knows which process is the debugger and will inform the debugger the breakpoint is reached and pause the process).

Building a Debugger
•We can then get breakpoints and

interactive debugging
• Attach to target
• Set up signal handler
• Add in exception-causing instructions
• Inspect globals, etc.
• #define BREAKPOINT *(0)=0:

• Macro to replace BREAKPOINT with *(0) = 0

24

#include <stdio.h>
#include <signal.h>

#define BREAKPOINT *(0)=0

int global = 11;

int debugger_signal_handler() {
 printf(“debugger prompt: \n”);
 // debugger code goes here!
}

void main() {
 signal(SIGSEGV, debugger_signal_handler) ;

 global = 33;

 BREAKPOINT;

 global = 55;

 printf("Outside, global = %d\n", global);
}

Presenter Notes
Presentation Notes
#define … Macro to replace BREAKPOINT with *(0)=0
e.g., you can inspect globals in the debugger etc.

Advanced Breakpoints
• Optimization: hardware breakpoints (HBP)

• Special register: if PC value = HBP register value, signal an exception
• Faster than software, works on ROMs, only limited number of breakpoints, etc.

• Feature: conditional breakpoint: “break at instruction X if some_variable =
some_value”

• As before, but signal handler checks to see if some_variable = some_value

• If so, present interactive debugging prompt

• If not, return to program immediately

• Is this fast or slow?

25

Presenter Notes
Presentation Notes
PC: program counter, instruction pointer
HBP: hardware break pointer
ROM: read only meomory, embeded stuff, where you don’t want source code. Like, the instructions for the computer to start up. You use HBP to debug bianaries in ROM.
Slow: everytime it reaches the breakpoints it has to check the condition.

Single-Stepping

•Debuggers also allow you to advance through code one
instruction at a time

•To implement this, put a breakpoint at the first instruction
(= at program start)

•The “single step” or “next” interactive command is equal
to:
• Put a breakpoint at the next instruction
• Resume execution
• (No, really.)

26

Presenter Notes
Presentation Notes
One instruction: one assembly instruction or you can step though a line of code.
Depends on what you are "single stepping". Lines? If assembly: you cannot implement on your source code (kind of can, if you can use compiler info)

Watchpoints
•You want to know when a variable changes
•A watchpoint is like a breakpoint, but it stops execution

after any instruction changes the value at location L
•How could we implement this?

27

Watchpoint Implementation

•Software Watchpoints
• Put a breakpoint at every instruction (ouch!)
• Check the current value of L against a stored value
• If different, give interactive debugging prompt
• If not, set next breakpoint and continue (single-step)

•Hardware Watchpoints
• Special register holds L: if the value at address L ever changes, the

CPU raises an exception

28

Presenter Notes
Presentation Notes
CPU will check it all the time--hardware

Video Game History

• This 1979-1980 Atari 2600 video game introduced the first widely-known Easter egg. At
the time, Atari did not allow game designers or programmers to credit themselves in any
way (games were marketed and branded as produced by Atari overall). Warren Robinett
included a secret room crediting himself as the designer. When a 15-year-old from Utah
discovered it and wrote to Atari for an explanation, they tasked Brad Stewart to fix it, but
he said he would only change it to “Fixed by Brad Stewart”. Atari decided to leave it in
game, dubbing such hidden features Easter eggs and saying they would include more in
the future. The game itself involves carrying items around three castles to defeat three
dragons.

Presenter Notes
Presentation Notes
Atari: old video game console
The Atari game "Adventure"

Video Game History

• This 1979-1980 Atari 2600 video game introduced the first widely-known Easter egg. At
the time, Atari did not allow game designers or programmers to credit themselves in any
way (games were marketed and branded as produced by Atari overall). Warren Robinett
included a secret room crediting himself as the designer. When a 15-year-old from Utah
discovered it and wrote to Atari for an explanation, they tasked Brad Stewart to fix it, but
he said he would only change it to “Fixed by Brad Stewart”. Atari decided to leave it in
game, dubbing such hidden features Easter eggs and saying they would include more in
the future. The game itself involves carrying items around three castles to defeat three
dragons.

Presenter Notes
Presentation Notes
Atari: old video game console
The Atari game "Adventure"

Psychology: Reactions

•You are invited to participate in a group discussion of “personal
problems”. Because of the sensitive nature of the discussion, it
takes place over an intercom. During the discussion, you hear:
• “I-er-um-I think I-I need-er-if-if could-er-er-somebody er-er-er-er-er-er-er

give me a little-er-give me a little help here because-er-I-er-I’m-er-erh-h-
having a-a-a real problem-er-right now and I-er-if somebody could help me
out it would-it would-er-er s-s-sure be-sure be good . . . because-there-er-
er-a cause I-er-I-uh-I’ve got a-a one of the-er-sei er-er-things coming on
and-and-and I could really-er-use some help so if somebody would-er-give
me a little h-help-uh-er-er-er-er-er c-could somebody-er-er-help-er-uh-uh-
uh (choking sounds). . . . I’m gonna die-er-er-I’m . . . gonna die-er-help-er-
er-seizure-er-[chokes, then quiet].”

31

Presenter Notes
Presentation Notes
Over an intercom: you can hear them, but not face to face

Psychology: Reactions

•The more people in the
discussion, the longer it takes
anyone to take action

•Gender (of you or others) had no
effect

32

Bystander Effect

•“It is our impression that non-intervening subjects not
decided not to respond. Rather they were still in a state of
indecision and conflict concerning whether to respond or
not. The emotional behavior of these nonresponding
subjects was a sign of their continuing conflict ...”

•Motivated by 1964 attack on Kitty Genovese in residential
New York: rape and murder took 30+ minutes and had 37(?)
witnesses → no one came out to help

33

Bystander Effect

• [Darley and Latane. Bystander Intervention in Emergencies: Diffusion of Responsibility. J.
Personality and Social Psych. 8(4) 1968.]

•Implications for SE: Team sizing considerations. Who will
volunteer to be assigned this bug?

34

Human Fault Localization

• OK, so humans have debuggers

• Are humans any good at debugging?

• Not all bugs are equally easy to find

• Not all programs are equally easy to debug

35

Find The Bug: Tower of Hanoi

•Over 53% of participants
(seniors) could find the bug in
about 3 minutes

•Note: conditional branches,
recursive calls, rich
comments, variable names

36

Presenter Notes
Presentation Notes
Tower of hanoi
Line 20 is wrong. It should be: moveOneDisk(start, end)
NOTE: pay attention to them, because in next slide, you wont have them

Find The Bug 2

•Only 33% could locate the bug

•Note: shorter, simpler
identifiers, simpler control
flow, not as abstract

37

Presenter Notes
Presentation Notes
Awful function name...
Line 9: hanoi1(src, spare)
Peg: tower
This code only handles 3 disks

Human Study

•Participants (n=65, half with >4 years of experience) were
shown snippets of textbook
• Defects seeded based on 100 consecutive bug fixes from the Mozilla

bug repository

•Double experimental control
• Quicksort in Textbook A vs. Textbook B has the same complexity

(differs only in style)
• Bubblesort in Textbook A vs. AVL Tree in Textbook A differ in

complexity (have same presentation style)
• [Z. Fry et al.: A Human Study of Fault Localization Accuracy. International Conference on Software

Maintenance (ICSM) 2010]

38

Presenter Notes
Presentation Notes
The Hanoi tower is a problem in this study

What Do You Think?

•Rank these: which of these bugs is easiest for humans to
find?
• Extra Assignment
• Missing Statement
• Extra Conditional
• Calling Wrong Method
• Extra Statement

39

40

Fa
ul

t l
oc

al
iza

tio
n

ac
cu

ra
cy

Presenter Notes
Presentation Notes
It can hard. What can we do to make it easier

Tool Support for Fault Localization

•A spectrum-based fault localization tool uses a dynamic
analysis to rank suspicious statements implicated in a fault
by comparing the statements covered on failing tests to the
statements covered on passing tests

•Basic idea:
• Instrument the program for coverage (put print statements

everywhere)
• Run separately on normal inputs and bug-inducing inputs
• Compute the set difference on coverage!

41

Fault Localization Example

•Consider this simple buggy program:

42

Coverage-Based Fault Localization

Statement 3,3,5 1,2,3 3,2,1 3,2,1 5,5,5 2,1,3
int m;
m = z;
if (y < z)
if (x < y)
m = y;
else if (x<z)
m = y; // bug
else
if (x > y)
m = y;
else if (x>z)
m = x;
return m;

Pass Pass Pass Pass Pass Fail 43

Insight: Print-Statement Debugging

•If you do not execute X but you do observe the bug, X
cannot be related to that bug

•If Y is primarily executed when you observe the bug, it is
more likely to be implicated that Y is more related to the
bug than X

•Suspiciousness Ranking from Tarantula

44[Jones and Harrold. Empirical Evaluation of the Tarantula Automatic Fault-Localization Technique. ASE 2005.]

Fault Localization Ranking

Statement 3,3,5 1,2,3 3,2,1 3,2,1 5,5,5 2,1,3 susp(s)
int m; 0.5
m = z; 0.5
if (y < z) 0.5
if (x < y) 0.63
m = y; 0
else if (x<z) 0.71
m = y; // bug 0.83
else 0
if (x > y) 0
m = y; 0
else if (x>z) 0
m = x; 0
return m; 0.5

Pass Pass Pass Pass Pass Fail 45Pass Pass Pass Pass Pass Fail

Popular SBFL Formula

Zhang, Yueke, Kevin Leach, and Yu Huang. "Leveraging Evidence Theory to Improve Fault Localization: An
Exploratory Study." In 2023 ACM/IEEE International Symposium on Empirical Software Engineering and
Measurement (ESEM), pp. 1-12. IEEE, 2023.

Profiling

•A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

•A flat profile computes the average call times for functions
but does not break times down based on context

•A call-graph profile computes call times for functions and
also the call-chains involved

47

Event-Based Profiling

•Interpreted languages provide special hooks for profiling
• Java: JVM-Profile Interface, JVM API
• Python: sys.set_profile() module
• Ruby: profile.rb, etc.

•You register a function that will get called whenever the
target program calls a method, loads a class, allocates an
object, etc.
• cf. “signal handler”

48

Presenter Notes
Presentation Notes
.pyc --> python bytecode, interpreted by python interpreter
.class -> java bytecode, interpretered by JVM
Cf. Compare to singal handler they are similar. Instead of a signal it is an event

Java can be considered both a compiled and an interpreted language because its source code is first compiled into a binary byte-code. This byte-code runs on the Java Virtual Machine (JVM), which is usually a software-based interpreter.

Statistical Profiling

•You can arrange for the operating system to send you a
signal (just like before) every X seconds (see alarm(2))

•In the signal handler you determine the value of the target
program counter
• And append it to a growing list file
• This is sampling

•Later, you use debug information from the compiler to map
the PC values to procedure names
• Sum up to get amount of time in each procedure

50

Statistical Profiling

•You can arrange for the operating system to send you a
signal (just like before) every X seconds (see alarm(2))

•In the signal handler you determine the value of the target
program counter
• And append it to a growing list file
• This is sampling

•Later, you use debug information from the compiler to map
the PC values to procedure names
• Sum up to get amount of time in each procedure

51

Sampling Analysis

• Advantages
• Simple and cheap – the instrumentation is unlikely to disturb the program
• No big slowdown

• Disadvantages

52

Sampling Analysis

• Advantages
• Simple and cheap – the instrumentation is unlikely to disturb the program
• No big slowdown

• Disadvantages
• Can completely miss periodic behavior (e.g., you sample every k seconds

but do a network send at times 0.5 + nk seconds)
• High error rate

•Read the gprof paper

54

Presenter Notes
Presentation Notes
If the sampling period is 0.01 seconds and foo's run-time is 1 second, the expected error in foo's run-time is 0.1 seconds. It is likely to vary this much on the average from one profiling run to the next. (Sometimes it will vary more.)
The rule of thumb is that a run-time figure is accurate if it is considerably bigger than the sampling period.

Sampling Analysis

• Accuracy depends on sampling rate
• Higher sampling rate incurs higher

overhead

[Leach et al. Towards Transparent Introspection. SANER 2016]

Real-World Tool Utility

•Human study of 34 graduate students

•Given Tarantula (as a friendly plugin for Eclipse) and asked
to complete two debugging tasks
• Tetris: square block rotation bug
• NanoXML: parsing library exception

•Hypotheses:
• Tools will help us debug faster
• Tools help more on harder problems

56[Parnin and Orso. Are Automated Debugging Techniques Actually Helping Programmers? ISSTA '11.]

Results

•Experts Are Faster When Using Tools
• Over all participants, tools did not help
• Top-third of participants went from 14:28 to 8:51 with tool support

(for Tetris, p < 0.05)

•Tools Did Not Help With Harder Tasks

•Changes In Rank Did Not Matter
• 7 → 35 in Tetris, 83 → 16 in NanoXML
• Why is this so crucial here?

57

Explanations

•“Based on this data, we have determined that programmers
do not visit each statement in a linear fashion.”

•“If the faulty nature of a statement were apparent to the
developers by just looking at it, tool usage should stop as
soon as they get to that statement in the list.”
• “participants, on average, spent another ten minutes using the tool

after they first examined the faulty statement. That is, participants
spent (or wasted) on average 61% of their time continuing to inspect
statements with the tool after they had already encountered the
fault.”

58

Implications

•You are a Software Engineering manager

•Making a process decision: do we purchase, train on, and
deploy Tarantula?

•Tarantula claims: this tool will correctly rank buggy
statements near the top of the list
• This is almost a red herring!
• You must examine the “end-to-end” performance

•So fault localization tools are worthless?
59

Nuanced Example

•Suppose you have three devs: A, B and C
• Expert, Medium, Novice

•Tarantula makes A, the expert, 39% faster
• But makes everything 13% slower (training, overhead, whatever)

•If everything is equal, net gain = 0 (as in study)

•But suppose A is 25x faster than C (productivity later)
• A=25, B=13, C=1 → in this world your team, overall, is 8.7% faster

with Tarantula

60

Questions?

•HW4
• Please read the homework website first:

Recommended Work Flow

• Due this Sunday
• Can use GP

61

	Slide Number 1
	The Story So Far …
	One-Slide Summary
	Outline
	Quick Quiz: Which of these is photoshopped?
	Bucket-Wheel Excavators
	Modern Software Is Huge?
	Example Programs: < 1MLOC
	Example Programs: 5-10 MLOC
	Example Programs: 25 – 50 MLOC
	Example Programs: 50 – 100 MLOC
	Example Programs: 0.1 – 2.0BLOC
	Modern Software Is Huge!
	Humans Are Poor At �Comprehending Large Scales
	Fault Localization
	What is a Debugger?
	Debuggers
	How to design a basic debugger?
	Signals
	Signal Example
	Attaching A Debugger
	Building a Debugger
	Advanced Breakpoints
	Single-Stepping
	Watchpoints
	Watchpoint Implementation
	Video Game History
	Video Game History
	Psychology: Reactions
	Psychology: Reactions
	Bystander Effect
	Bystander Effect
	Human Fault Localization
	Find The Bug: Tower of Hanoi
	Find The Bug 2
	Human Study
	What Do You Think?
	Slide Number 40
	Tool Support for Fault Localization
	Fault Localization Example
	Coverage-Based Fault Localization
	Insight: Print-Statement Debugging
	Fault Localization Ranking
	Popular SBFL Formula
	Profiling
	Event-Based Profiling
	Statistical Profiling
	Statistical Profiling
	Sampling Analysis
	Sampling Analysis
	Sampling Analysis
	Real-World Tool Utility
	Results
	Explanations
	Implications
	Nuanced Example
	Questions?

