
Defect Reporting and Triage

Exam 1

• Mar 5, Tuesday: Lecture time (75 mins)

• In-person, paper-based

• Open book, open notes, open internet

• "I will learn X on the fly" does not work well

• No ChatGPT, no discussion

• 7 Questions
• 6 + 1 extra credit question
• Extra credits will be added directly to the exam grade (100+5, but cannot exceed 100)
• If you are stuck on one, move forward and come back later

• Student Center: I will send them the pdf of the exam

Exam 1

• Grading will be done the same day

• Clear handwriting

• Empty answer got 30% of the points (not applied to Extra Credits)

The Story So Far …

•Quality assurance is critical to software engineering.

•Static (code review, inspection, dataflow analysis) and
dynamic (testing, instrumentation) approaches are common

•What happens to all of the bugs those find?

4

One-Slide Summary

•A software defect report includes information and
communications related to addressing a software issue.
• Defect reports have many components.

•Defect reports are subject to triage based on severity and
priority information.

•Defect reports have a lifecycle that is complicated and non-
linear with multiple possible resolutions.

5

Is This Really A Problem?

• “Every day, almost 300 bugs appear that need triaging. This
is far too much for only the Mozilla programmers to
handle.”

- Mozilla Developer

6

Is This Really A Problem?

• “Every day, almost 300 bugs appear that need triaging. This
is far too much for only the Mozilla programmers to
handle.”

- Mozilla Developer, 2005

7

Plus ça change …

8

“Just Yesterday”
100,000/year = 270/day

9

Terminology (1/2)
•The software maintenance lexicon is full of ambiguity

• Terms adapted from “standard” engineering, etc.

•A fault is an exceptional situation at run time
• In EE: “short circuit”, “stuck-at fault”
• In CS: “trap”, “exception”

•A defect is any characteristic of a product which hinders its
usability for its intended purpose
• In real life: “design defect”, “manufacturing defect”
• In CS: a bug is a static defect in the source code

10

Terminology (2/2)

•A bug report provides information about a defect
• Created by testers, users, tools, etc.
• Often contains multiple types of information
• Often tracked in a database

•A feature request is a potential change to the intended
purpose (requirements) of software
• In CS: an issue is either a bug report or a feature request (cf. “issue

tracking system”) - did you start HW6 yet??

•Not used here: “mistake”, “error”, etc.

11

These Terms Are Somewhat Subjective

12

Defect Report Lifecycle

•The defect report lifecycle consists of a number of possible
stages and actions, including reporting, confirmation,
triage, assignment, resolution, and verification.
• Not every defect report follows the same path
• The overall process is not linear

• There are multiple entry points, some cycles, and multiple exit points (and some
never leave …)

•The status of a defect report tracks its position in the
lifecycle (“new”, “resolved”, etc.)

13

Report Lifecycle

•Bugzilla is a widely-used
open-source issue tracker

•GitHub's built-in issue
tracker is similar (less
structured)

14

Bug is Reported

• New bug reports enter the system

15

Bug Report Sources

•Internal
• Developers
• QA / Testers
• Reports are usually detailed, sophisticated

•External
• Beta Testers
• End Users
• Reports are usually more general

16

Do End Users Submit Bug Reports?

17

End-User Bug Reports

•Modern view: cannot count on
end users to describe bugs in a
helpful manner
• The larger your user base is or the

more of a “margin” business model
you have, the truer this becomes

•Instead: these are aggregated

18

19

Bug Reporting: GitHub

20

21

The Anatomy of a Bug Report

•What should be in a bug report?

22

Click to add text

Defect Report Components

23

Title

Status

Assignee

Product

Defect Report Attachments

•Screenshots

•Videos

•Stack Traces

•Data Files

•Note: rarely present

•Note: may come from
multiple sources

24

“Ideal” Defect Report Comment:
"Reproduction"

25

Defect Reports:
Conversations

•Defect reports are not static

•Instead, they are updated over time
• Request more info
• Assign to a dev
• Discuss solutions

•The report is a log of all relevant
activity

26

Trivia: Computing History

•This computer system was released in 2006 and featured an
IBM Cell processor. It not only ran video games, but also
was used in cluster computing for high-performance protein
folding computation. The HPC community created its own
Linux variant for this system: Yellow Dog Linux

•Initially, it sold at a $200 - $300 loss per unit, leading to the
eventual retirement of the company’s President

27

Trivia: Computing History

•This computer system was released in 2006 and featured an
IBM Cell processor. It not only ran video games, but also
was used in cluster computing for high-performance protein
folding computation. The HPC community created its own
Linux variant for this system: Yellow Dog Linux

•Initially, it sold at a $200 - $300 loss per unit, leading to the
eventual retirement of the company’s President

28

Ken Kutaragi PS3

Trivia: Movies

•This giant, lumbering paranormal monster from the
Ghostbusters franchise appears when Gozer tells the heroes
that it will take the form of the next thing they think of. Ray
tries to think of “the most harmless thing … that could
never possibly destroy us.”

29

Trivia: Movies

•This giant, lumbering paranormal monster from the
Ghostbusters franchise appears when Gozer tells the heroes
that it will take the form of the next thing they think of. Ray
tries to think of “the most harmless thing … that could
never possibly destroy us.”

30

Stay Puft Marshmallow Man

https://en.wikipedia.org/wiki/Stay_Puft_Marshmallow_Man

Psychology: Delayed Gratification

•A child is offered a choice between one reward now or two
rewards 15 minutes later.

•Over 600 children took part.

•Some would “cover their eyes with their hands or turn
around so that they can't see the tray, others start kicking
the desk, or tug on their pigtails, or stroke the marshmallow
as if it were a tiny stuffed animal,” while others would
simply eat the marshmallow as soon as the researchers left.

31

Psychology: Delayed Gratification

•Results:
• A minority choose the single reward immediately
• A majority attempted to wait the 15 minutes

• One-third of those who attempted succeeded
• Age was a major correlated factor
• Trust/belief in reward also a major factor

•This work is well-known because of the associated follow-
up studies and correlations

32

Psychology: Delayed Gratification

•The ability to delay gratification also correlates with higher
SAT scores

•Brain imaging study of a sample from the original Stanford
participants when they reached mid-life showed key
differences between those with high delay times and those
with low delay times in two areas: the prefrontal cortex
(more active in high delayers) and the ventral striatum,
(more active in low delayers) when they were trying to
control their responses to temptations

33

Psychology: Delayed Gratification

•Also correlates with educational attainment, body-mass
index, cognitive and academic competence, and ability to
cope with frustration and stress in adolescence

• [Mischel, Walter; Ebbesen, Ebbe B. 1970. “Attention in delay of gratification”. Journal of
Personality and Social Psychology. 16 (2): 329–337]

•Implications for SE: “quick and dirty” fix or desire to “just
start coding” vs. planning and using an SE process

34

Bug Triage

•Which bugs should we address first?

35

Triage

•Triage is the assignment of degrees of
urgency to wounds or illnesses to decide
the order of treatment of a large number of
patients or casualties

•There are always more defect reports than
resources available to address them

•Cost-benefit analysis
• How expensive is it to fix this bug?
• How expensive is it to not fix this bug?

36

Which Bugs Should We Fix?

•Common Myth:

37

Severity

•Severity is the degree of impact that a defect has on the
development or operation of a component or system
• “cost of not fixing it”
• Bugzilla severity labels:

38

Priority

•Defect Priority (Bug Priority) indicates the importance or
urgency of fixing a defect.

•Phabricator examples:
• Needs Triage - Default option, priority has not yet been determined
• Unbreak Now! - Something is broken and needs to be fixed

immediately, setting anything else aside
• High - Someone is working or planning to work on this task soon
• Normal - Less than High, but someone still plans to work on it
• Low - Less than Normal, but someone still plans to work on it
• Lowest - Nobody plans to work on this task

39

Priority Assignment Example

•Phabricator Agile example:
• High priority for tasks committed for the current sprint, or that need

to find an owner who can start working on them soon
• Normal priority for tasks that are not critical for the current sprint or

candidates for a next sprint
• Low priority for tasks that we can live without, usually sitting in the

backlog, sometimes added to a sprint
• “As a rule of thumb, limit High priority task assignments for a single

person to three, five in exceptional times.”

40

Severity vs. Priority

•Severity and Priority are often correlated, but are officially
independent
• A “Normal” Severity issue could currently be “Low” Priority if there

are many outstanding “Critical” Severity issues, etc.

•Severity and Priority are used together (along with
complexity, risk, etc.) to evaluate, prioritize and assign the
resolution of reports
• Distributed on-line voting (e.g., in open source)
• In-person meeting (e.g., commercial)

41

Simple Lie

•Supply + Demand → Price

•Severity + Priority → Triage

42

Bug Assignment

•Who should fix this bug?

43

Example

•Severity and Priority discussions

•Assignment discussions

44

Defect Assignment

•An assignment associates a developer with the
responsibility of addressing a defect report

•The current state of the art is “manual”
• Distributed: developers watch the incoming bug report queue and

claim defects for themselves
• Centralized: one or more people in QA watch the incoming bug

report queue and assign reports to a pool of developers

•Usually based who “owns” the implicated code

45

Near Future: Automatic Assignment

46

Near Future: Automatic Assignment

47

Seven Years Later

Bug Resolution

•Did we fix it?

48

Defect Resolution

•Now that the defect report has been assigned to a
developer, it can be localized, debugged, etc. Those are
future lecture topics!

•A defect report resolution status indicates the result of the
most recent attempt to address it
• Important: resolved need not mean “fixed”

49

Possible Resolutions

•Bugzilla resolution options:
• FIXED (give commit #)
• INVALID (bug report is invalid)
• WONTFIX (we don't ever plan to fix it)
• DUPLICATE (link to other bug report #)
• WORKSFORME (cannot reproduce, a.k.a. “WFM”)
• MOVED (give link: filed with wrong project)
• NOTABUG (report describes expected behavior)
• NOTOURBUG (is a bug, but not with our software)
• INSUFFICIENTDATA (cannot triage/fix w/o more)

50

Possible Resolutions

•Bugzilla resolution options:
• FIXED (give commit #)
• INVALID (bug report is invalid)
• WONTFIX (we don't ever plan to fix it)
• DUPLICATE (link to other bug report #)
• WORKSFORME (cannot reproduce, a.k.a. “WFM”)
• MOVED (give link: filed with wrong project)
• NOTABUG (report describes expected behavior)
• NOTOURBUG (is a bug, but not with our software)
• INSUFFICIENTDATA (cannot triage/fix w/o more)

51

Thought question:
What fraction of

bug reports
end up with each

Resolution?

Duplicate, Invalid

• [Jalbert et al. Automated Duplicate Detection for Bug Tracking
Systems. DSN 2008.]

52

Reopen?

•I thought we fixed it!

53

Reopened

•A defect report that was previously resolved (e.g. “FIXED”)
may be reopened if later evidence suggests the old
resolution is no longer adequate
• “We thought this fixed it, but now others are reporting it.”
• “We thought this was out of scope, but now we really need to

address it.”

•Compare: regression testing

•Surely this only happens rarely?

54

Many Fixes Are Wrong
Even On Mature, Critical Software

55
[Yin et al. How Do Fixes Become Bugs? ESEC/FSE 2011.]

Large Study of Bug Reports

• 2000 defect reports in Linux, Mozilla, Apache
• Memory Bugs: ~15%;

• Semantic Bugs: ~75%;

• Concurrency Bugs: ~10%

• Bug→Crash: ~20%;

• Bug→Wrong Behavior: ~80%
• Why Crash? Memory Bugs ~55%

• Most common? ~50% of Mozilla bugs are GUI issues

• Whence security bugs? 30% memory bug causes (severe), 70%
semantic bug causes

57
[Tan et al. Bug Characteristics in Open Source Software. EMSE 2014.]

HW4: specially designed

58

• I removed the "static analysis" part: only about Unit Testing now

• Will be officially activated on 11:59pm, Sunday Mar 3

HW4: 85% practice on jUnit + 15% exploration on SE Training
and Education

59

• Will be officially activated on 11:59pm, Sunday Mar 3

• "Only and Special" homework to practice unit testing with several
most advanced CS Education recommendations
• Three groups: G1, G2, G3

• Please follow the specific link sent to you once the homework is activated
• Your instructions can be slightly different from others!

• So don't ask your friends for their link

• But the tasks are exactly the same

• The link contains all detailed information and instructions for HW4

• You must work alone on HW4 (no teams allowed)

More about HW4

60

• Much easier than all other homework in terms on "how long it takes"; harder in terms of "special
instructions I have to follow"

• Two tasks on Unit Testing
• Task 1 - "MarsRoverAPI" : no coding, 20 mins
• Task 2 - "BowlingScoreKeeper" : coding for unit testing, 60 mins
• Task 1 is a "warm up" for Task 2
• Don't worry, the instructions will provide all information for Task 1 and 2 to help you understand it - the whole

design is verified in a big study before

• Screen recording – one recording for the entire HW4 (Task 1&2)
• One continuous block of time for HW4
• All submission instructions will be clearly provided in the link
• Take your time to understand the "bowling rules" first before recording
• Recording – actual time you work on the tasks

• Grading
• "Try your best" within the time: "80% of you reached expectation, then everyone get full credits"
• How do we reward great performance?

• Extra credits for top 10% in each group (we have 3 groups, you don't compete with people outside your own group)

"Don't worry, you will have enough time!"

Questions?

•Exam1

61

	Slide 1
	Slide 2: Exam 1
	Slide 3: Exam 1
	Slide 4: The Story So Far …
	Slide 5: One-Slide Summary
	Slide 6: Is This Really A Problem?
	Slide 7: Is This Really A Problem?
	Slide 8: Plus ça change …
	Slide 9: “Just Yesterday” 100,000/year = 270/day
	Slide 10: Terminology (1/2)
	Slide 11: Terminology (2/2)
	Slide 12: These Terms Are Somewhat Subjective
	Slide 13: Defect Report Lifecycle
	Slide 14: Report Lifecycle
	Slide 15: Bug is Reported
	Slide 16: Bug Report Sources
	Slide 17: Do End Users Submit Bug Reports?
	Slide 18: End-User Bug Reports
	Slide 19
	Slide 20: Bug Reporting: GitHub
	Slide 21
	Slide 22: The Anatomy of a Bug Report
	Slide 23: Defect Report Components
	Slide 24: Defect Report Attachments
	Slide 25: “Ideal” Defect Report Comment: "Reproduction"
	Slide 26: Defect Reports: Conversations
	Slide 27: Trivia: Computing History
	Slide 28: Trivia: Computing History
	Slide 29: Trivia: Movies
	Slide 30: Trivia: Movies
	Slide 31: Psychology: Delayed Gratification
	Slide 32: Psychology: Delayed Gratification
	Slide 33: Psychology: Delayed Gratification
	Slide 34: Psychology: Delayed Gratification
	Slide 35: Bug Triage
	Slide 36: Triage
	Slide 37: Which Bugs Should We Fix?
	Slide 38: Severity
	Slide 39: Priority
	Slide 40: Priority Assignment Example
	Slide 41: Severity vs. Priority
	Slide 42: Simple Lie
	Slide 43: Bug Assignment
	Slide 44: Example
	Slide 45: Defect Assignment
	Slide 46: Near Future: Automatic Assignment
	Slide 47: Near Future: Automatic Assignment
	Slide 48: Bug Resolution
	Slide 49: Defect Resolution
	Slide 50: Possible Resolutions
	Slide 51: Possible Resolutions
	Slide 52: Duplicate, Invalid
	Slide 53: Reopen?
	Slide 54: Reopened
	Slide 55: Many Fixes Are Wrong Even On Mature, Critical Software
	Slide 57: Large Study of Bug Reports
	Slide 58: HW4: specially designed
	Slide 59: HW4: 85% practice on jUnit + 15% exploration on SE Training and Education
	Slide 60: More about HW4
	Slide 61: Questions?

