\MBGINE "TRUTH \S A SPHERE:

THE SPUERE
Static and
Dataflow
Analysis

THE SPUERE
\S ALL

(two or three-part
lecture)

The Story So Far ...

e Quality assurance is critical to software engineering.

e Testing is the most common dynamic approach to QA.
e But: race conditions, information flow, profiling ...

e Code review and code inspection are the most common
static approaches to QA.

e \What other static analyses are commonly used and how do
they work?

Review and Wrap-up: Dynamic Analysis

Programs with an error

* Dynamic analyses involve running the program

* You instrument the source code
e Consider: what property do you care about?
 What information do you need to understand that property?

 What mechanisms can be used to collect that information?
* What post-hoc analyses must be conducted on that information?

* You compile the instrumented source code
* You execute the instrumented program on test inputs

p5 p6

* Analyses of this sampled data entails statistical errors

’ I‘mteb Metbobnt Cbmd o

Semantics.FAIL”

One-Slide Summary

e Static analysis is the systematic examination of an
abstraction of program state space with respect to a
property. Static analyses reason about all possible
executions but they are conservative.

e TL;DR analyses of code (i.e., not runtime)

e Dataflow analysis is a popular approach to static analysis. It
tracks a few broad values (“secret information” vs. “public
information”) rather than exact information. It can be
computed in terms of a local transfer of information.

/]

goto fail

“Unimportant” SSL Example

static 0OSStatus
SSLVerifySignedServerKeyExchange(SSLContext *ctx, bool isRsa,
SSLBuffer signedParams,
uint8_t *signature,
UInt16 signaturelLen) {
OSStatus err;

if ((err = SSLHashSHA1.update(&hashCtx, &serverRandom)) != 0)
goto fail;

if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;

fail:

SSLFreeBuffer (&signedHashes);

SSLFreeBuffer(&hashCtx) ;

return err

The Apple goto fail vulnerability: lessons learned
David A. Wheeler
goto faij.

2021-01-16 (original 2014-11-23) N J0to fail:

ns that we should learn from the Apple “goto fail” vulnerability. It first starts with some background, discusses the mis
ntifying what could have countered this, briefly discusses the Heartbleed countermeasures from my separate paper or

https://dwheeler.com/essays/apple-goto-fail.html

CNET » News » Security & Privacy » Klocwork: Our source code analyzer caught Apple's "..
Featured Posts

Klocwork: Our source code
analyzer caught Apple's
'gotofail’ bug

If Apple had used a third-party source code analyzer on its encryption
library, it could have avoided the "gotofail" bug.

by Declan McCullagh | February 28,2014 1:13 PM PST
=
W Follow

3+ 5 More + Comments ~ 25

Motorol:
powere(
Internet (

0K, Glat
inmy fa
Cutting E

Apple if
product
Apple

iPad wit

comeba
Apple

wﬁss&w« Bhas(tx)) 1= @)

Most Popular

m N
if (Cer SSUWSJN update(Bhash(tx, &clientRandom)) != @)

if (Cerr = SSLW.M:(MU(&serverfandom)) = @)
g foll; -

Giant 3[

if (C -ssuwwi.wame(m(t tsignedfarans)) 1= @) = house
- :r Apple, we need to talk ok Bl
Sadensnuy Firal(BhashCtx, BhashOut)) 1= @) i ace

Correst seaten: Analyze

. - Static code analyslsgxl;t:!lwmM:::ZWW- [E));c;gzi':
& Ceormk e B © ocwen »veo , 716 Twe n H "
- — GOTO Statement Considered Harmful
T RSERIILT T s s e | S oofle ..
i -- Edsger Dijkstra
wrube Seantisen | 632060 &

Klocwork's Larry Edelstein sent us this screen snapshot, complete with the arrows, showing how the company's Connect With CNET

product would have nabbed the "goto fail" bug.

(Credit: Klocwork) Facebook

Like Us

It was a single repeated line of code -- "goto fail" -- that left millions of Apple users
vulnerable to Internet attacks until the company finally fixed it Tuesday. BE? candle s

https://dwheeler.com/essays/apple-goto-fail.html

Linux Driver Example

/* from Linux 2.3.99 drivers/block/raid5.c */
static struct buffer_head *
get_free_buffer(struct stripe_head * sh,
int b_size) {

struct buffer_head *bh;

unsigned long flags;

save_flags(flags);

cli(); // disables interrupts

if ((bh = sh->buffer_pool) == NULL)

return NULL;

sh->buffer_pool = bh -> b_next;

bh->b_size = b_size;

restore_flags(flags); // enables interrupts

return bh;

Could We Have Found Them?

e How often would those bugs trigger?

e Linux example:

e What happens if you return from a device driver with interrupts disabled?

e Consider: that's just one function
... in a 2,000 LOC file

... in @ 60,000 LOC module

... in the Linux kernel: 15+ millions LOC

e Some defects are very difficult to find via testing or manual
Inspection

Many Interesting Defects ...

e...are on uncommon or difficult-to-exercise execution paths
e Thus itis hard to find them via testing

e Executing or dynamically analyzing all paths concretely to
find such defects is not feasible

e We want to learn about “all possible runs” of the program
for particular properties

e Without actually running the program!
e Bonus: we don't need test cases!

Fundamental Concepts

e Abstraction

e (Capture semantically-relevant details
e Elide other details
e Handle “lI don't know”: think about developers

* Programs As Data

e Programs are just trees, graphs or strings

e And we know how to analyze and manipulate those (e.g., visit every
node in a graph)

Static Analyses Often Focus On

e Defects that result from inconsistently following simple,
mechanical design rules

Security: buffer overruns, input validation
Memory safety: null pointers, initialized data
Resource leaks: memory, OS resources

API Protocols: device drivers, GUI frameworks
Exceptions: arithmetic, library, user-defined
Encapsulation: internal data, private functions
Data races (again!): two threads, one variable

e | Am Devioper

Knock knock
Race condition
Who's there?

1013 PePOTP®30L

How And Where Should We Focus?

WALDO

SRl FRNTASTIC T
4 "JOURNEY |

L 4 .
MARTIN .
HANDFORD Faog o°5

Static Analysis

e Static analysis is the systematic examination of an
abstraction of program state space

e Static analyses do not execute the program!

e An abstraction is a selective representation of the program
that is simpler to analyze

e Abstractions have fewer states to explore

e Analyses check if a particular property holds

e Liveness: “some good thing eventually happens”
e Safety: “some bad thing never happens”

Syntactic Analysis Example

e Find every instance of this pattern:

public foo() {

logger.debug(“We have ” + conn + “connections.”);

¥

public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
¥

e First attempt:
grep logger\.debug -r source dir

e |s it enough?

16

Abstraction: Abstract Syntax Tree

e An AST is a tree representation of the syntactic structure of
source code

e Parsers convert concrete syntax into abstract syntax

e Records only semantically-relevant information
e Abstracts away (, etc. Example: 5 + (2 + 3)

+

e AST captures program structure

17

Abstraction: Control Flow Graph

e A CFG is a representation, using graph notation, of all paths
that might be traversed through a program during its
execution.

e Process-oriented

e Directed graph

e 3 representation, using graph notation, of all paths that
might be traversed through a program during its execution.

Programs As Data

e “grep” approach: treat program as string
e AST approach: treat program as tree
e CFG approach: treat program as a graph

e The notion of treating a program as data is fundamental

e Recall from Computer Organization/Architecture: instructions are
iInput to a CPU

e Writing different instructions causes different execution

Dataflow Analysis

e Dataflow analysis is a technique for gathering information
about the possible set of values calculated at various points
In @ program

e We first abstract the program to an AST or CFG

e We then abstract what we want to learn (e.g., to help
developers) down to a small set of values

e We finally give rules for computing those abstract values
e Dataflow analyses take programs as input

Two Exemplar Analyses

e Definite Null Dereference

* “Whenever execution reaches *ptr at program location L, ptr will be
NULL"

e Potential Secure Information Leak

e “We readin a secret string at location L, but there is a possible future
public use of it”

WELL THERE'S YOUR
PROBLEM 21

Discussion

e These analyses are not trivial to check

* “Whenever execution reaches” - “all paths” - includes
paths around loops and through branches of conditionals

* We will use (global) dataflow analysis to learn about the
program

e Global = an analysis of the entire method body, not just one { block }

22

Analysis Example

* [s ptr always null when it is dereferenced?

ptr = new AVL();

if (B > 0)

/\

ptr = 0; X =2 * 3

— -

print (ptr->data) ;

Correctness

* To determine that a use of x is always null, we must know
this correctness condition:

* On every path to the use of x,
the last assignment to xis x :=0 **

Test: I do Not BELIEVE iN LiNEaR WHEN IN DQUBT,
TIME. THERE IS No Past and DENY ALL TERMS
1. What important event Yook futuRE: QlL is ONE, aNd AND DEFINITIONS .
place on December 16, 17737 EXiSTENCE IN tHE YEMPoRal SENSE
s ILLUSORY. THiS QUESHON, M
W HIEREFORE, 1S MEANINGLESS angd A\' N
| MPeSSIBLE t© INSWER . ¢!
x>

Analysis Example Revisited

* [s ptr always null when it is dereferenced?

prifit (ptr->data) ;

25

Static Dataflow Analysis

e Static dataflow analyses share several traits:

The analysis depends on knowing a property P at a particular point in
program execution

Proving P at any point requires knowledge of the entire method body
e Property P is typically undecidable!

& & Word cannot edit the Unknown.

26

Undecidability of Program Properties

e Rice’s Theorem: Most interesting dynamic properties of a
program are undecidable:

e Does the program halt on all (some) inputs?
e halting problem

e |sthe result of a function F always positive?
e Assume we can answer this question precisely
e Qops: We can now solve the halting problem.
e Contradiction!

static int IsNegative(float arg)
{
char*p = (char*) malloc(20);
sprintf (p, """, arg);

return p(0]=="'-";
1

Undecidability of Program Properties

eSo, if interesting properties are
out, what can we do?

e Syntactic properties are decidable!

o_ ., ”n

e e.g., How many occurrences of “x” are
there?

* Programs without looping are also
decidable!

Looping

e Almost every important program has a loop
e Often based on user input

e An algorithm always terminates

*So a dataflow analysis algorithm must terminate even if the
input program loops

e This is one source of imprecision

e Suppose you dereference the null pointer on the 500" iteration but
we only analyze 499 iterations

29

Conservative Program Analyses

e \We cannot tell for sure that ptr is always null
e So how can we carry out any sort of analysis?

e|t is OK to be conservative.

Conservative Program Analyses

e \We cannot tell for sure that ptr is always null
e So how can we carry out any sort of analysis?

|t is OK to be conservative. If the analysis depends on
whether or not P is true, then want to know either

e Pisdefinitely true
e Don’tknow if Pis true

31

Conservative Program Analyses

e |t is always correct to say “don’t know”
e We try to say don’t know as rarely as possible

e All program analyses are conservative

e Must think about your software engineering process

e Bug finding analysis for developers?
They hate “false positives”, so if we don't know, stay silent.
e Bug finding analysis for airplane autopilot?
Safety is critical, so if we don't know, give a warning.

Definitely Null Analysis

* [s ptr always null when it is dereferenced?

ptr = new AVL();

ptr = 0;
if (B > 0)

N

if (B > 0)
ptr = 0; X =2 * 3;

foo = myAVL; ptr = 0;

~.

print (ptr->data) ;

~.

print (ptr->data) ;

33

Definitely Null Analysis

* [s ptr always null when it is dereferenced?

34

Definitely Null Analysis

* [s ptr always null when it is dereferenced?

print (ptr—-2data) ; print (ptr— =

No, not always. Yes, always.

On every path to the use of ptr, the
last assignment to ptris ptr :=0 **

35

Definitely Null Information

e \We can warn about definitely null pointers at any point
where ** holds

e Consider the case of computing ** for a single variable ptr
at aI program pOIntS | don’t know for: sure if you exist, but

e Valid points cannot hide!

e We will find you!

e (sometimes)

| might find you without,overclaiming
knowledge of your existence, and’l
acnkowledge that | occasionally produce
false positives and negatives

36

Definitely Null Analysis (Cont.)

* To make the problem precise, we associate one of the
following values with ptr at every program point

value interpretation

1 This statement is
(called Bottom) not reachable

C X = constant c

T Don’t know if X is a
(called Top) constant

Example

Let's fill in these blanks now.

< X=T
X:=3 x-
B>0
X: -_> — X:
Y=Z+W Yi=0
X= —>
X:i=4 /<_ X =
X= — X =
A=z2*X

Recall: L = not reachable, ¢ = constant, T = don't know.

38

Example Answers

= X=T
X = «— X-=3
B>0
XV\X:3
Y=Z+W Yi=0
X=3 —>
X:=4 _/<— X=3
X=-4 X=T
Ai=2*X
«— X=T

Recall: L = not reachable, ¢ = constant, T = don't know.

Trivia: Abstract Interpretation

e This French computer scientist was known for inventing abstract
interpretation.

e Abstract interpretation is a theory of sound approximation of the
semantics of computer programs, based on monotonic functions
over ordered sets, especially lattices. It can be viewed as a partial

execution of a computer program which gains information about
its semantics (e.g., control-flow, data-flow) without performing all
the calculations.

e |[ts main concrete application is formal static analysis. Such
analyses have two main usages:

e Compilers: to analyse programs to decide whether certain optimizations or
transformations are applicable;

e Debugging or the certification of programs against classes of bugs.

Trivia: Abstract Interpretation

e This French computer scientist was known for inventing abstract
interpretation.

e Abstract interpretation is a theory of sound approximation of the
semantics of computer programs, based on monotonic functions
over ordered sets, especially lattices. It can be viewed as a partial

execution of a computer program which gains information about .
its semantics (e.g., control-flow, data-flow) without performing all Radhia Cousot
the calculations. (Together with

e |[ts main concrete application is formal static analysis. Such Patrick Cousot)

analyses have two main usages:

e Compilers: to analyse programs to decide whether certain optimizations or
transformations are applicable;

e Debugging or the certification of programs against classes of bugs.

Using Abstract Information

e Given analysis information (and a policy about false
positives/negatives), it is easy to decide whether or not to

ISsue a warning
e Simply inspect the x = ? associated with a statement using x

e [fxisthe constant 0 at that point, issue a warning!

e But how can an algorithm compute x = ?

The lIdea

* The analysis of a complicated program can be expressed as
a combination of simple rules relating the change in
information between adjacent statements

METIMES T FEEL LIKE QUR || WELL, THOREND SANS, " SIMALIRY,
LIFE HAS GOTTEN TOO QOMALL-] | SIMPLIFY.” MAYBE WE NEED
CATED.. THAT WEVE ACUMAATED | | T DO THAT. -
NORE TUAN NE REALLY NEED
TUAT WEVE ACEPTED TOO Mat

47

Explanation

eThe idea is to “push” or “transfer” information from one
statement to the next

e For each statement s, we compute information about the
value of x immediately before and after s

* C..(x,s) = value of x before s

* C,.t(x,s) = value of x after s

Transfer Functions

e Define a transfer function that transfers information from
one statement to another

49

Rule 1

* C,+(x,x:=c)=c if cis aconstant

50

Rule 2

* Coilx,s)=L ifC(x,s)=1

Recall: L = “unreachable code”

51

Rule 3

<« X-=2

x = f(..)

l «— X=T

o Cilx, x:=1(..)) =T

This is a conservative approximation! It might be possible
to figure out that f(...) always returns 0, but we won't even try!

52

Rule 4

* Coilx,yi=.)=C.(x, y:=...) ifx#y

53

The Other Half

e Rules 1-4 relate the in of a statement to the out of the same
statement

e they propagate information across statements

e Now we need rules relating the out of one statement to the
in of the successor statement

e to propagate information forward along paths

*|n the following rules, let statement s have immediate
predecessor statements p,...,p,

Rule 5

*if C, (%, p;) =T forsome i, thenC (x,s)=T

55

Rule 6

if Coi(x, p;) =c and C,4(x, p;) =d and d #c ,thenC (x,s)=T

56

Rule 7

if C,.(x, p;) =c or L foralli,thenC, (x,s)=c

57

Rule 8

if C,.(x, p;) =L foralli,thenC, (x,s)=1

58

Static Analysis Algorithm

e For every entry s to the program, set
C.(x,s)=T

oSet C. (%, s) = C,,(x, s) = L everywhere else

e Repeat until all points satisfy 1-8:
* Pick s not satisfying 1-8 and update using the appropriate rule

The Value L

e To understand why we need 1, look at a loop

< X=T

X :=3
B>0

«— X=3

XV\X:.?

Y=Z+W

A=2*X
A<B

60

The Value L

e To understand why we need 1, look at a loop

\X:‘S’

Yi=0
— X =272
X =222
Ai=2*X «— X =22

A<B

The Value 1 (Cont.)

e Because of cycles, all points must have values at all times
during the analysis

e |ntuitively, assighing some initial value allows the analysis to
break cycles

eThe initial value L means “we have not yet analyzed control
reaching this point”

62

Another Example

X:=3 Analyze the value of X ...
B>0
Yi=Z+W Y:=0 X
A=2%X
X

Another Example: Answer

«— X=T
X:=3 <—X:4><3
B>0
X:)<3 AX:%3

Y=Z+W Yi=0

<—X:)<4
X:%3MJ)<X T
AT:Z*X <——X:4><,X T

X:=4
. X -)< 4 Must continue
A < until all rules

\ are satisfied !

65

Orderings

e We can simplify the presentation of the analysis by ordering
the values

] < c < T

* Making a picture with “lower” values drawn lower, we get

| am called
a lattice!

66

Orderings (Cont.)

T is the greatest value, L is the least

e All constants are in between and incomparable

e (with respect to this analysis)

el et lub be the least-upper bound in this ordering
e cf. “least common ancestor” in Java/C++

e Rules 5-8 can be written using lub:

*C..(x,s)=lub{C,(x, p) | pisapredecessor of s }

Termination

e Simply saying “repeat until nothing changes” doesn’t
guarantee that eventually nothing changes

e The use of lub explains why the algorithm terminates
e \alues start as L and only increase

1 can change to a constant, and a constant to
e Thus, C (x, s) can change at most twice

Number Crunching

* The algorithm is polynomial in program size:
* Number of steps =
Number of C_{(....) values changed * 2 =

(Number of program statements)? * 2

69

Trivia

e This Polish computer security researcher is well known for the attack

against Vista Kernel protection mechanism (Black Hat Briefings
conference in LA, 2006) and the invention of Blue Pill, that uses
hardware virtualization to move a running OS into a virtual machine.

e Later on, this researcher presented another attack against the Intel
Trusted Execution Technology (TXT).

e This researcher demonstrated that certain types of hardware-based
memory acquisition is unreliable and can be defeated.

Trivia

e This Polish computer security researcher is well known for the attack

against Vista Kernel protection mechanism (Black Hat Briefings
conference in LA, 2006) and the invention of Blue Pill, that uses
hardware virtualization to move a running OS into a virtual machine.

e Later on, this researcher presented another attack against the Intel Joanna Rutkowska
Trusted Execution Technology (TXT).

e This researcher demonstrated that certain types of hardware-based
memory acquisition is unreliable and can be defeated.

Two Exemplar Analyses

e Definite Null Dereference

* “Whenever execution reaches *ptr at program location L, ptr will be
NULL"

e Potential Secure Information Leak

e “We readin a secret string at location L, but there is a possible future
public use of it”

WELL THERE'S YOUR
PROBLEM .-

“Potential Secure Information Leak” Analysis

* Could sensitive information possibly reach an insecure use?

str := get password()

If B >0

/\

str := sanitize(str) Y :=0

\x/

display (str)

In this example, the password contents can
potentially flow into a public display
(depending on the value of B)

78

Live and Dead X3

eThe first value of x is dead (never used)

e The second value of x is live (may be used)

e|iveness is an important concept

e We can generalize it to reason about “potential secure information
leaks”

79

Sensitive Information

* A variable x at stmt s is a possible sensitive (high-security)
information leak if

e There exists a statement s’ that uses x

e Thereisapathfromstos’
e That path has no intervening low-security assignment to x

Chronicle.com - Today's News [(=) ¢

[+] Textbook Sales Drop, and University Presses Search for

~ve A
Reasons Why

[+ Students Flock to Web Sites Offering Pirated Textbooks

[Caver Proc

80

Computing Potential Leaks

e \We can express the high- or low-security status of a variable
in terms of information transferred between adjacent
statements, just as in our “definitely null” analysis

*|n this formulation of security status we only care about
“high” (secret) or “low” (public), not the actual value

e We have abstracted away the value

e This time we will start at the public display of information
and work backwards

Secure Information Flow Rule 1

l <« H(x)=true
display (x)

«— H({Xx)=2

H. (x, s) = true if s displays x publicly
true means “if this ends up being a secret variable

then we have a bug!”

82

Secure Information Flow Rule 2

l <« H (x)= false

X

:= sanitize (x)

«— H({Xx)=2

H. (x, x := e) = false

(any subsequent use is safe)

83

Secure Information Flow Rule 3

* H (x,s)=H

out

1 «— H(x)=-a

S

«— H((x)=-a

(x, s) if s does not refer to x

84

Secure Information Flow Rule 4

p

mfm@

H=2 H=2 H = true H=2

*H_.(x, p) = V{H.(x,s) | sasuccessorof p}

(if there is even one way to potentially have a leak, we potentially have a leak!)

85

Secure Information Flow Rule 5 (Bonus!)

1 <« H(y)=a

X =Yy

«— H(x)=a

° Hin(yl X .= y) = Hout(xl X .= y)
(To see why, imagine the next statement is

display(x). Do we care about y above?)

86

Algorithm

eletall H (...) =false initially

e Repeat process until all statements s satisfy rules 1-4 :

* Pick s where one of 1-4 does not hold and update using
the appropriate rule

Secure Information Flow

X := passwd()

@
X := sanitize (X)
B >0 E

Example

H(X) = false
H(X) = false

H(X) = fam()() = false

X := passwd()

A <B
\

Y :=Z + W vy = 0 & H(X)-= false
/—/(X)—'W):ﬁ;e
<— H(X) = false
display (X)

< H(X) = false
< H(X) = falbe
<— H(X) = false

88

Secure Information Flow Example

X := passwd()

€—\H(X) = false

X := sanitize (X)

B > 0 <—\H(X) - false

H(X) = fam()() = false

Y :=Z + W vy = 0 & H(X)-= false

H(X) = W) = 7 0;6
<— H(X) = TRUE

display (X)

< =
X := passwd() H(X) = false
A <p STHCX) - fape
S

<— H(X) = false

Secure Information Flow Example

X := passwd()
X := sanitize (?/—/(X):fa/se
B >0 <— H(X) = TRUE

H(X) = TM{)@ = TRUE

Y ;=2 + W

Y := 0 & HX)=TRUE

H(X) = W) = TRVE
<— H(X) = TRUE

display (X)
6—
X := passwd()
A<B
SN——

—H(X) = TRU.

<«<— H(X) = TRUE

91

Secure Information Flow Example

X := passwd()

No possible leak
Starting here

POSSIBLE LEAK
From high-security
value starting here

> 0

b
X := sanitize (X)
B

S

H(X) = false
H(X) = TRUE

;ﬂxyz'ﬁiifijiz”/////h\\\\\\ﬁ:::£29:'ﬁQUE'

Y :

Z

+

W

Y :

= 0 |€—HX)= TRUE

H(X) = W) = TRYE
S

H(X) = TRUE
—H(X) = TRU.

display (X)

A <B

€

X := passwd()

N——

<«<— H(X) = TRUE

92

Termination

e A value can change from false to true, but not the other way
around

e Each value can change only once, so termination is
guaranteed

e Once the analysis is computed, it is simple to issue a
warning at a particular entry point for sensitive information

Static Analysis Limitations

e \Where might a static analysis go wrong?
e |f | asked you to construct the shortest program you can that
causes one of our static analyses to get the “wrong” answer,

what would you do?
YOU KNOW THIS METAL I SPEND MOST OF MY UFE | | BUT TODAY, THE PATTERN

RECTANGLE FULL OF PRESSING BUTTONS TO MAKE | | oF LlGHTS 1S ALL WROMG!

UTTLE LIGHTS? THE PATTERN OF LIGHTS OHGOD! TRY

K veRH. k souNDs /wwr BU1TONS'
HELPING!

LTI T 23|

Static Analysis

eYou are asked to design a static analysis to detect bugs
related to file handles
e A file starts out closed. A call to open() makes it open; open() may

only be called on closed files. read() and write() may only be called

on open files. A call to close() makes a file c/losed; close may only be
called on open files.

e Reportif a file handle is potentially used incorrectly

e What abstract information do you track?

e What do your transfer functions look like?

Abstract Information

e We will keep track of an abstract value for a given file
handle variable

e Values and Interpretations
T file handle state is unknown

1 haven't reached here yet
closed file handle is closed
open file handle is open

Rules

e Previously: “null ptr”

e Now: “file handles”

97

Rules: open

l <«— f = closed

open

(£)

\4

<«— f = open

1 <«— f=Toropen

98

Rules: close

1 <« f=open 1 «— f = Tor closed
close (f) close (f)
<«— f = closed \ Report

v \ 4

Rules: read/write

* (write is identical)

1 <« f=open 1 «<— f =T or closed
read (f) read (f)
«— f-= open \ Repam‘

v \ 4

100

Rules: Assignment

101

Rules: Multiple Possibilities

«— f=-1

«— f-a

«— =T «— f=-a

102

A Tricky Program

start:

switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);

do {
write(f) ;
if (b): read(f);
else: close(f);

} while (b)

open(f);

close(f);

start:

closed
switch (a)
case 1: open(f); read(f); close(f); goto start N
. . 1
default: open(f); start: open(f)
do { 1 1
write(f) ; | |
if (b): read(f); open(f)
1
else: close(f); * write(f) close(f)
} while (b) read(f) N
open(f): 1 1
close(f); N
close(f) read(f)
1
1

close(f) open(f)

closed

closed
1
start: open(f)
closed =
closed open(f) L
1
open write(f) close(f)
read(f) 1
1
open
1
close(f) read(f)
1
1

close(f) open(f)

closed

closed

start:

closed

closed

open(f)
open

read(f) N
open

close(f)

closed

open(f)
open
open
open
write(f) close(f)
open
closed
read(f)
open
1
1
close(f) open(f)

closed

closed
open(f)
open
read(f)
open

close(f)

closed

closed

start:

closed

open(f)
open
open
open
write(f) close(f)
open
closed
read(f)
open
T
1
close(f) open(f)

closed

closed
open(f)
open
read(f)
open

close(f)

closed

closed

start:

closed

open(f)
open
T

T

write(f) close(f)

read(f)

close(f) open(f)

closed

closed
open(f)
open
read(f)
open

close(f)

closed

closed

start:

closed

open(f)
open
T

T

write(f) close(f)

read(f)

close(f) open(f)

109

s There Really A Bug?

start:

switch (a)
case 1: open(f); read(f); close(f); goto start
default: open(f);

do {
write(f) ;
if (b): read(f);
else: close(f);

} while (b)

open(f);

close(f);

Forward vs. Backwards Analysis

* We've seen two kinds of analysis:

* Definitely null (cf. constant propagation) is a forward
analysis: information is pushed from inputs to outputs

* Secure information flow (cf. liveness) is a backwards
analysis: information is pushed from outputs back towards
Inputs

Questions?

e How's the homework going?

eExam

