Test Suite Quality Metrics

EXPRESSED VIA we
WORD * ODAL SENSE OF CHALLENGING
ZOME PERGON OR PERSPECTIVE,
~. EVEN THOUGH THE

SrmbC~COoMICS.Com

Review: Quality Assurance

* We use testing to help assure the quality of software we deliver

* Testing consists of running the subject program on a subset of
possible inputs, comparing results or behavior to a known output

* Your test suite represents the specification for the program

 Testing gives you confidence (not proof) that the program does some
good things and doesn’t do some bad things
e Testing is imperfect: proving programs are correct is undecidable

Review: Testing Concepts

* Regression testing helps detect regressions in software

* Fuzz testing helps automate the process of selecting inputs
* Penetration testing helps discover security vulnerabilities

* Unit tests evaluate individual components

* Integration tests evaluate the end-to-end system

* The divide between unit and integration testing is blurry
e Unit tests that depend on external components could be thought of as integrations
e Generally, Unit tests are for very specific behavior (other components are black-boxed)

* Mocking helps make testing cheaper

One-Slide Summary

e Test suite quality metrics help us decide which suite to use.
Line coverage, the fraction of lines visited when running a
suite, is simple but gives limited confidence. Branch
coverage, which requires both true and false values for
conditionals, is richer (incorporating data values indirectly).
Mutation analysis measures the fraction of seeded defects
detected by a suite; it is expensive but effective.

e Beta and A/B testing involve real users and their
experiences.

The Story So Far ...

e Testing is the most common dynamic technique for software
guality assurance.

e Testing is very expensive (e.g., 35% of total IT spending).

[Capgemini World Quality Report. 2015]

e Not testing, or testing badly, is even more expensive

[Minimizing code defects to improve software quality and lower development costs. IBM 2008]

Design and Integration Customer Postproduct
architecture Implementation testing heta test release
1X* 5X 10X 15X 30X

*Xis a normalized unit of cost and can be expressed in terms of person-hours, dollars, etc.
Source: National Institute of Standards and Technology (NIST) T

By catching defects as early as possible in the development cycle, you can significantly reduce your
development costs.

Story Time

e Abboty Labs (St. Jude Medical) makes pacemakers

eIn 2016, 465,000 of them were discovered to have security
vulnerabilities

“The wireless protocol used for communication /’{\
amongst St. Jude Medical cardiac devices has serious '/-\, : ‘\
security vulnerabilities that make it possible to ;;j el TIRA

convert Merlin@home devices into weapons capable
of disabling therapeutic care and delivering shocks to
patients at distances of 10 feet, a range that could
be extended using off-the-shelf parts to modify
Merlin@home units.”

https://medsec.com/stj|_expert_witness_report.pdf

Turtles All The Way Down

e “The “fix” is not a surgical replacement pacemaker, but a
firmware update that takes about three minutes to
complete and carries a “very low risk of update
malfunction;” a very small percentage of people might
experience a “complete loss of device functionality” during
the firmware update. The patch covers St. Jude Medical’s
pacemakers: Accent, Anthem, Accent MRI, Accent ST,
Assurity and Allure.”

are-fix.html

https://www.csoonline.com/article/3222068/hacking/465000-abbott-pacemakers-vulnerable-to-hacking-need-a-firmware-fix.html

Guiding Narrative

e How should we think about testing?

- an 7%
e | ens of Logic . cf%S J»Tﬁm |
8 8»\?-0 Puchner & Marg]gz ﬁ;?eq):f

oV

e ens of Statistics

e ens of Adversity

Lens of Logic

IF P \S FALSE,
T WILL 8 SAD.

T DO NOT wi\gw

&“ TO BE SAD.

AL s have foor leg
1 have Lour /eg)%.

The(f-?o(é, [A caC. \

C ? THEREFORE, P \S TRUE.

4/

There. Now you can skip 99% of philosophical debates.

¥ Microsoft Visual Studio 2010 Ultimate Beta 2 - ENU

The operation completed successfully.

The Motivation i

What data does this emor report contain?

e |f testing is our best way to gain confidence in the quality of
software, but testing is expensive, how can we ensure that
we are testing in an effective manner?

e Informally Want: The program passes the tests if and only if
it does all the right things and none of the wrong things.

e Pass all tests - program adheres to requirements
e FEach failing test - program behaves incorrectly

10

Intultion

e Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on
negative inputs.

e Suppose further that your test suite does not include any
negative inputs.

e Can we conclude that passing all of the tests implies

adhering to all of the requirements? |AVG Free Edition

i Teszt cannaot be started because it already doez not exdist.

...............................

...............................

Coverage

e We desire all of the requirements to be covered (“checked”)
by the test suite.

e For our purposes, X coverage is the degree to which Xis
executed/exercised by the test suite.

e Examples:

e Statement coverage is the fraction of source statements that are
executed by the test suite.

Do Tests Cover All Requirements?

e \Want: traceability between requirements and test cases

e Each test case annotated like:
e “3 program that passes this test satisfies requirement X” or

* “passing this test gives confidence that a program adheres to
requirement Y’

e Qutside of certain industries (e.g., Aerospace), such formal
traceability is rare
e e.g., https://en.wikipedia.org/wiki/DO-178C

https://en.wikipedia.org/wiki/DO-178C

An Approximation

e \We will cover requirements elicitation later in this course
e Assume: no formal traceability

e So testing that the program does all and only the good
things that it is required to do is not possible

e (or not feasible)

Don't Do Bad Things

e \We can at least test that the program does not do certain
bad things
e e.g., “don't segfault”,
e “don't send my password to Microsoft”,
e “onthis one particular input, don't get the wrong answer”

e Note that “l never do bad things” is not the same as “I
always/eventually do good things”

e For more information, take a class on Modal Logic or read about
Liveness vs. Safety properties

Testing to Find Bugs

* So now we want to test to gain confidence that the program does
not do “bad things”

e That is, that the program does not have bugs

* Key Logical Observation: If we never test line X then testing
cannot rule out the presence of a bug on line X

* (You could read line X, but we're talking about testing. Later this
semester: code review.)

It this seems “too obvious” so far, just wait ...

e = TR N e A g P S I o 3 TR N S A -
: = ‘F?‘T"v' T G ‘ ' e » s AL XN m,_'\'/ -'_:!:‘.lo\-;:)ﬁ. ?&
s o

G2, TN e .
L R icd o TR A,

1y i‘/n"- "3‘4;1'.""/12‘ -
e I -_(...f’"_- o S R SRR

A.M' . -

» SCORE MORE RUNS THAN THE ROCKIES
» PADRES ARE 12-0 WHEN THEY OUTSCORE THEIR OPPONENTS

WGC Roundofil6 : 2&1 (49) Willett def. (27) Westwood 3 & 2

17

P =2 Q

* “No test covers X - may have bug in X"

e Note that you could test line X and still have a bug on line X

e foo(a,b) { return a/b; }
e test: Too(6,2)

e But testing X gives us some small but non-zero confidence
in the correctness of X

“All Other Things Being Equal”

o |f test A visits lines 1 and 2
e And test B visits lines 1, 2, 3and 4

eThen, all other things being equal, we prefer test B

e Test A gives some confidence about 1 and 2 and no confidence (no
information) about 3 and 4

e Test B gives some confidence about 1, 2, 3 and 4

e |f the confidence/info gained per tested line is ¢>0, test A
gives us 2¢+0 and test B gives us 4c.

e Because c>0, we have 4c > 2c. So B > A.

Simplitying Assumptions

e Assumption 1. We gain the same amount of confidence (or
information) for each visited line.

e Assumption 2. The amount of confidence (or information)
we gain per visited line is positive.

ASUME A

SPHERICAL |

COO\)

IN A VACUUM

20

Line Coverage: A Test Suite Quality Metric

e A test suite quality metric or test suite adequacy criterion
assesses the quality of a test suite and allows test suites to
be compared.

eLine (or statement) coverage is a test suite quality metric: it
is the number of unique lines (statements) visited
(exercised) by the program when running the test suite.

e (Informally: visiting more lines is better because you gain confidence
about visited lines.)

21

Using Line Coverage

e Given two test suites that both run within your resource budget
(“AOTBE”, etc.), if we can only run one, we prefer the test suite
with higher line coverage

e Thus coverage is a metric that allows us to compare two test
suites and pick the “better” one

* We use this information to guide decision-making in a software
process (“how should we do testing?”)

22

Collecting Line Coverage

e At its simplest, this is just print-statement debugging

e Put a print statement before every line of the program

e Run all the tests, collect all the printed information, remove
duplicates, count

e Practical concern: the observer effect (from physics) is the
fact that simply observing a situation or phenomenon
necessarily changes that phenomenon.

Coverage Instrumentation

e Coverage instrumentation modifies a program to record

coverage information in a way that minimizes the observer
effect.

e This can be done at the source or binary level.

e Don't actually print to stdout/stderr

e Don't slow things down too much
e Pre-check before printing a duplicate?

eDon't introduce infinite loops
e |nstrument “print” with a call to “print”?

Good News: “Solved” Problem

eThis is a well-studied problem and many push-button
solutions exist for various forms of coverage

e Either built in to your IDE or as external tools

eYou will use three in the Homework
e Python's coverage, gcc's gcov, Java's cobertura

e For more information on how to write one yourself, take a
(graduate?) PL or Compilers class.

Problems with Line Coverage

e \What could go wrong with line coverage?

e Can you think of situations with 100% line coverage where
the program might still have bugs?

WEIRD — MY CODES CRASHING
WHEN GIVEN PRE-1970 DATES.

EPOCH T-‘mL‘

L%ﬁ

Example: Statement Coverage Inadequacy

e Cross-site scripting (XSS) attacks:

[2016 Vulnerability Statistics Report, edgescan]

Insecure Deployment: Availability: CSRF: Open Redirection:
1% 1% 5% 2%

Information Leakage: HTML Injection:

3% 3%
Authorisation: g / Response Splitting:
4% ‘ o - 1%
Injection Attacks: DOM
4% / /‘ Browser L
ﬁ % Attacke Vulnerabilities:
, i A%
Session - 61%

Application
Layer

Management: / 'l"' '
9% (

XSS:
86%

Browser Attack:
61%

Cryptography:
17%

Example: Statement Coverage Inadequacy

e Cross-site scripting attacks:

12016 Vuln o bapomment. """ hvaiabiiy G OpenRedirction
1% 1% — 5% 2%
Information L eakage: W 2 LITAM toiocss

HI, THIS 15 OH DEAR = DID HE | DID YOU REALLY WELL, WEVE LOST THIS
YOUR SONS SCHOOL. | BREAKSOMETHING? | NAME YOUR SON YEAR'S STUDENT RECORDS.
WE'RE HAVING SOME N H WAY = Robert'); DROP I HOPE YOURE HAPPY.
GHPUTEE TROUBLE. / TRABLE Students;-- 7 !
AND I HOPE
~ OH. YES LITTLE ~~ YOUVE LEARNED
WE BOBBY TABLES, TO SANMIZE YOUR
WE CALL HIM. DATABASE INPUTS.

Cryptography:
17%

Browser Attack:

_ 61%

28

Data Values and Implicit Control Flow

ereturn a/b

—>

if (b '= 0)
return a/b;

else
ABORT

eprint ptr->fld

if (ptr != NULL)
print ptr->fld
else
ABORT

29

Intultion

e Many interesting data values cause implicit or explicit
changes of control

e Thatis, they cause different branches of conditionals to execute

e Informally, the problem of ensuring that we cover
interesting data values may reduce to the problem of
ensuring that we cover all branches of conditionals

. ~ , Failed to insert optional class information: Error was ToString() takes at
‘S least 2147483647 arguments (1 given)

30

Branch Coverage

e Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that
test suite (i.e., if>true and if—>false are counted separately)

e Note that branch coverage can subsume line coverage:

foo(a):
. Test Suite {foo(7)} has 100%
if a > 5; line coverage but 50% branch

0 » coverage.

print "X
. W n Test Suite {foo(7), foo(0)}
print 'y has 100% line and 100%
branch coverage.

Branch vs. Line

e Branch coverage typically gives us more confidence than
line coverage

e Typically, 100% branch coverage implies 100% line coverage

e However, branch coverage is “more expensive” in the sense
that it is harder for a test suite to have high branch coverage
than to have high line coverage

e Note: quality isn't really “more expensive”, it’s more that line
coverage alone isn’t enough. Quality is hard to achieve.

Other Flavors

* Function Coverage: what fraction of functions have been
called?

e Condition Coverage: what fraction of boolean
subexpressions have been evaluated?

e Comparing this to branch coverage is a not-uncommon test question

* Modified Condition / Decision Coverage: function coverage
+ branch coverage (this is a simplification)

e Used in mission critical (e.g., avionics) software

33

Trivia; Statistics

e This English social reformer and statistician (among other
activities, ~1850) was a pioneer in the use of infographics:
the effective graphical presentation of statistical data.

. DIAGRAM er rae CAUSES or MORTALITY 2
APRIL 1855 o MARCH 1856 IN THE ARMY IN THE EAST. APRIL 1854 ro MARCH 1855,

JVL’

C
z
C)

BULCARIA

The Arvas of the Hue: red. & black wedges are cach meavsured. from
the cenlre as the commen verten

Thie Wace wedges meancred frowy the: cenlre of the cirele rpresent area
for area. the: dealles frem Freoendidle or Milrgadle Zymotee diseases, the
red wedges meairred from: the cenlre: the dealhs from. weurds, & the
Wack wedges measured from the cenlre lthe deaths e all dher causes

The Mack line acress Vee ved triargle in Nov! (854 marks Ve boundary
o the deaths Trome all her caunes uring the nentle

Ire Belober 1854, & April (55, the black area. covscides welh the red.
wJaracary & February 858 he Mie concides wilh the Mok

The entire areas may be compared by lollowing the due. lie ved & the
HNack lines arelosing them

Trivia; Statistics

e This English social reformer and statistician (among other
activities, ~1850) was a pioneer in the use of infographics:
the effective graphical presentation of statistical data.

. DIAGRAM er rae CAUSES or MORTALITY 2
APRIL 1855 o MARCH 1856 IN THE ARMY IN THE EAST. APRIL 1854 ro MARCH 1855,

-‘VL’

The Arvas of the Hue: red. & black wedges are cach meavsured. from
the cenlre as the commen verten

T Wuie wedges meanired frome e cenlre of the airele rpreeent areas
for area. the: dealles frem Freoendidle or Milrgadle Zymotee diseases, the
red wedges mearrred from: the cenlre the dealhs from. wovereds, & the
Wack wedges measured from the cenlre lthe deaths e all dher causes

The Madck line acress Vee red triangle in Nov! (854 marks e bounidary
o the deaths Trome all her caunes uring the nentle

Ire Belober 1854, & April (55, the black area. covscides welh the red.
wJaracary & February 858 he Mie concides wilh the Mok

The entire areas may be wm’md by folleswing the dluce. lie ved & the
HNack lines arelosing them

Psychology: Recall

e 120 students (age 18 to 24) were asked to study prose passages
(e.g., 300 words on “Sea Otters”) and also do math problems

e Group 1: Read for 7m, math for 2m, re-read for 7m, math for 5m
e Group 2: Read for 7m, math for 2m, test for 10m, math for 5m

e Both groups: later - test for 10 minutes
e Which group did better? By how much?

Psychology: Recall

B Study, Study
Study, Test

l

©
o
©
Q
)
o
w
=
c
-
m
@
k=
-
o
c
R,
g
O
o

5 Minutes 2 Days 1 Week
Retention Interval

Psychology: Testing Effect

e The testing effect: long-term memory is increased when
some of the learning period is devoted to retrieving the to-
be-remembered information through testing with feedback.

¢ “They found that re-studying or re-reading memorized
information had no effect, but trying to recall the
information had an effect.”

e Implication for SE: Code comprehension.

e [Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory Tests
Improves Long-Term Retention". Psychological Science. 17 (3): 249-255.]

Lens of Statistics

Alternate View

e The bugs experienced by users are the ones that matter.

e Dually, bugs never experienced by users do not matter.

You chose to end the nonresponsive program, BuggyApp.

The proagram is not responding.

Please tell Microsoft about this problem.

We have created an error report that you can send to us. We will treat
this report as confidential and anonymous.

To see what data this error report contains, click here.

Send Ermor Report Don't Send

40

Positive User View

e Suppose you are writing a point-of-sale cashier application
that makes change for a dollar. Given any price between 1
and 100 cents, you must indicate the coins to give out as
change.

e e.g., 23 - return 3 quarters and 2 pennies

*|n this scenario, you can exhaustively test all 100 inputs that
will occur to real users in the real world

e |n some sense, it does not matter if that is 100% statement or code
coverage (e.g., dead code)

Negative User View

e Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

eThen you do not need to test line 4
e Evenifit has a bug, users will never encounter that bug

e Note “will” - this either requires a prediction of the future
or a finite input domain

Testing as Sampling

e |f user-experienced bugs are the ones that matter, testing
should be devoted to sampling those inputs that users will
provide

e TWO Views:

e Sample what users do most commonly
e Sample what causes the most harm if users do it

e Compare:
e Risk = (Prob. of Event) * (Damage if Event Occurs)

Sampling Error

e |n statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset,
or sample, of that population.

e “Our test suite is a sample of inputs that could occur in the real
world. Our program behaves well on our test suite.”

- later -
“Our program behaves badly on some other untested real input.
Sampling error!”

e Testing gives confidence the same way sampling (or polling)
gives confidence.

Sampling Bias

e |n statistics, sampling bias is a bias in which a sample is
collected in such a way that some members of the intended
population are less likely to be included than others.

e Suppose you are conducting a poll to see who will win the next

election, but you only poll republicans. \YOUR'SAMPLE SIZES ARE SMALL '

YOUR STANDARD IIEVIATIONS ABE HIGH

_ _ YOUR CONCLUSION MEANS NOTHING
e Suppose you are creating tests to see if your =\ © ¢ _

program will crash,
but you only poll nice, small, inputs.

g

AND YOU SHOULD FEEL BAD

45

Solution?

eThere are a number of well-established sampling
techniques in the field of statistics to help address such
biases

e They often require knowing something about the distribution of the
full population from which you want to sample a subpopulation

e The basic problem in SE is that the underlying distribution
of real user inputs is not known

Steam “Early Access” Starterpack

Beta Te Stl n g Not Recomm...
* Alpha testing is testing done by Mixed - 50%
dEVEIOpe I'S. Mostly Positiv

e Beta testing is testing done by —
external users
(often using a special beta version of

the program).
e See also “Early Access” Patch 2.0.2 is live!

And when you will fix this problem?

* Beta testing can be viewed as directly
sampling the space of user inputs

47

A/B Testing

e A/B testing involves two variants of your software, A and B,
which differ only in one feature. Different users are shown
different variants and responses are recorded. It is an

instance of two-sample statistical hypothesis testing.

o0 o0
'/ r /

Welcome to our website Welcome to our website

Loreim ipsum dodor sit amet, consactetur adipiscing alit, sad

Lorem ipsumm dal or Sit amet, consectetur adipiscing elit . ed
do edusmod tempor incidedunt ut labore et dolore magna da i Lermpor indG abone et dolone magna
ligua. Ut enim WENIam, nostnud exercita niem ad m A nostrud exercitation
ullamico laboris nisl ut allquip ex ea commods consequak i laboris misi 8 COMMOCo ConSsqu
Learn mon

Click rate: 52 % 72 % 48

Likely or Damaging?

e Recall two guiding approaches:

e Sample what users will do most commonly
e Sample what will cause the most harm

eThe former is sometimes called workload generation
e Common for databases, webservers, etc.

e The latter often relates to computer security
e Exploit generation, penetration testing, etc.

49

Non-Security Damage

e For Amazon (etc.), “damaging” is “customer does not

complete the purchase”

Cascading Stylesheet Error. An error in loading
the stylesheet between the current and next pages.

Code on the Screen. Any error that results in pro-
gramming language code appear on screen, including
any error referring to a line number (with the excep-
tion of visible HTML code).

Other Error/Error Message. Either any error mes-
sage, or any error that cannot be classified in any other
category.

Form Error. Missing, malformed, or extra buttons,
form fields, drop-down menus, etc, including incor-
rectly validating forms.

Missing Information. Any part of a webpage that
is missing, not including images.

Wrong Page/No Redirect. An unexpected page is
loaded.

Authentication. Any errors that occur during login.

Permission. Any errors occurring with respect to
user permissions in an application, such as access being
incorrectly denied to a user.

Feature

Correlation

F

Pr(> F)

Code on the Screen

|

19.47

0.00

Cosmetic - 13.23 0.00
Database — 12.36 0.00
Authentication + 6.99 0.01

Functional Display

6.00

0.01

Other Error

|

4.40

0.03

[Dobolyi et al. Modeling Consumer-Perceived

Web Application Fault Severities for Testing.

ISSTA2010.]

50

Lens of Adversity

Finding Bugs

e Suppose you want to decide between
two metal detectors

e You might bury some metal pieces in
your yard

e The metal detector that finds more of the
pieces is expected to be better at finding
metal in the wild

e Suppose you wanted to evaluate the

quality of two bug-finding test suites ...

52

Mutation Testing

e Mutation testing (or mutation analysis) is a
test suite adequacy metric in which the quality
of a test suite is related to the number of
intentionally-added defects it finds.

e Informally: “You claim your test suite is really
great at finding security bugs? Well, I'll just
intentionally add a bug to my source code and
see if your test suite finds it!”

53

Verisimilitude

*|In the metal detector example, if every piece of metal | bury
is next to an underground pipe, the metal detector that
finds them all may not actually do well in the real world

e The metal placement | decided on was not indicative of metal in the
real world

eSimilarly, if | add a bunch of defects to my software that are
not at all the sort of defects real humans would make, then
mutation testing is uninformative

Not writing
any bugs

Defect Seeding

Making typos
that lead to bugs

e Defect seeding is the process of intentionally

introducing a defect into a program. The intentionally
. . . . iti t
defect introduced is similar to defects %}té:rjquﬁa%?on"

introduced by real developers. The seeding is
typically done by changing the source code.

e For mutation testing, defect seeding is
typically done automatically (given a model
of what human bugs look like)

e You will do this in Homework 3

55

Mutation Operators

e A mutation operator systematically changes a program point. In
mutation testing, the mutation operators are modeled on
historical human defects. Examples:

eif (a < b) - if (a <= b)
eif (a == b) - if (a !'= b)
ea = b + C — a=>b-—-c
f(); 9(); - g(); (),
X = Y; = X = Z;

Mutant

* A mutant (or variant) is a version of the original program
produced by applying one or more mutation operators to one or
more program locations. The order of a mutant is the number of

mutation operators applied.

// original // 2"-order mutant
if (a < b): if (a <= b):
X =a+b > X =a-—-2>b

print(x) print(x)

Competent Programmers

eThe competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a
few keystrokes.

e Programmers write programs that are largely correct. Thus
the mutants simulate the likely effect of real faults.
Therefore, if the test suite is good at catching the artificial
mutants, it will also be good at catching the unknown but
real faults in the program.

58

Do Humans Really Make Simple Mistakes?

59

Competent?

e|s the competent programmer hypothesis true?

// return true if x is greater
// than or equal to y
bool value_to_return;

if(x > y) {
value_to_return = true;

}

if(x <vy) {
value_to_return = false;

}

if(x == y) {
value_to_return = true;

}

return value_to_return;

Competent?

e|s the competent programmer hypothesis true?

e Yes and no.

|t is certainly true that humans often make simple typos
(e.g., +to -).

eBut it is also true that some bugs are more complex than
that.

Coupling Effect

e The coupling effect hypothesis holds that complex faults
are “coupled” to simple faults in such a way that a test suite
that detects all simple faults in a program will detect a high
percentage of the complex faults.

o|s it true?

e Tests that detect simple mutants were also able to detect over 99%

of second- and third-order mutants historically

[A.). Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5-20, Jan. 1992.]

62

Mutation Testing

e A test suite is said to kill (or detect, or reveal) a mutant if
the mutant fails a test that the original passes.

e Mutation testing (or mutation analysis) of a test suite
proceeds by making a number of mutants and measuring
the fraction of them killed by that test suite. This fraction is
called the mutation adequacy score (or mutation score).

e A testsuite with a higher score is better.

63

Introduction

Mutation Testing D Fau

original Program Vtant Progrom

Test Cases
Applied to Both
Original & Mutant

Program

64

Mutation Testing D _Faut_,

original Program \ufant Program

¢ Mutation score =
Test Cases

number of mutants killed / total number
Applied to Both 4

i N\
of mutants * 100 Original & Mutant
ﬂ I Program
=

65

Mutation Testing

« Stillborn mutants
« Syntactically incorrect, killed by compiler: e.g.,
X=a++b
« Trivial mutants
+ Killed by almost any test case
« Equivalent mutants > HARD
« Always acts in the same behavior as the original
program: e.g., x=a+b and x=a-(-b)

*None of the above is interesting.
*W e care about mutants that behave differently but we
don’t have test cases to identify them yet

Fault

>
D Introduction

original Progyam

Vutant Program

\\

Test Cases
Applied to Both 9

/

Original & Mutant
Program

66

Equivalent Mutant Problem

eSuppose you have “x=a+ b; y=c+ d;” and you swap those
two statements.

e The resulting program is a mutant, but it is semantically
equivalent to the original.
e So it will pass and fail all of the tests that the original passes and fails.

¢ So it will dilute the mutation score

e Detecting equivalent mutants is a big deal. How hard is it?

Equivalent Mutant Problem

e Detecting equivalent mutants is a big deal. How hard is it?

|t is undecidable!
e By direct reduction to the halting problem (or by Rice's Theorem)

foo: # foo halts if and only if
if p1() == p2(): # pl is equivalent to p2
return ©

foo()

69

Mutation Analysis: Pros and Cons

e Has the potential to subsume other test suite adequacy criteria

e Read: it can be very good

e Which mutation operators do you use?

e Where do you apply them? How often do you apply them?
e Typically done at random, but how?

e[t is very expensive. If you make 1,000 mutants, you must now
run your test suite 1,000 times!

e We started by saying testing (1x) was expensive!

Questions?

eens of Logic: “no visit X - no find bug in X”
e Leads to statementand branch coverage.

e Lens of Statistics: “sample the inputs the users will make”
e Leadsto betatesting, A/B testing.

e | ens of Adversity: “poke realistic holes in the program and
see if you find them”

e [eadsto mutation testing.

