
Quality Assurance and Testing

One-Slide Summary

• Quality Assurance maintains desired product properties
through process choices.

• Testing involves running the program and inspecting its
results or behavior. It is the dominant approach to software
quality assurance. We use:
• regression testing to make sure new things don’t break old,
• unit testing to test individual pieces, and
• integration testing to test everything end-to-end

• Mocking uses simple replacement functionality to test
difficult, expensive or unavailable modules or features.

4

Story So Far

•We want to deliver high-quality software at a low cost. We
can be more efficient if we plan and use a software
development process.

•Planning requirements information: we measure the world
to combat uncertainty and mitigate risk.

•But how do we measure, assess or assure software quality?

5

Quality Motivation

• External (Customer-Facing) Quality
• Programs should “do the right thing”

• So that customers buy them!

•Internal (Developer-Facing) Quality
• Programs should be readable, maintainable, etc.

7

Internal-Facing Quality

• If the dominant activity of software engineering is
maintenance …
• Then internal quality is mostly maintainability!

•How do we ensure maintainability?
• Human code review
• Static analysis tools and linters
• Using programming idioms and design patterns
• Following local coding standards

•More on this in future lectures!

8
https://programming-idioms.org/

External-Facing Quality

•What does “Do The Right Thing” Mean?

•Behave according to a specification
• Foreshadowing: What is a good specification?

•Don't do bad things
• Security issues, crashing, etc.
• Some failure is inevitable. How to handle it?

•Robustness against maintenance mistakes
• Do “fixed” bugs sneak back into code?

9

Doing The Right Thing

•Why don't we just write a new program X to tell us if our
software Y is correct?

10

Doing The Right Thing

•Why don't we just write a new program X
to tell us if our software Y is correct?

•The Halting Problem prevents X from
giving the right answer every time
• X always gives a wrong answer
• X cannot always give a right answer

•We can still approximate!
• Type systems, linters, static analyzers, etc.

11

Practical Solution: Testing

12

Testing

•“Software testing is an investigation conducted to provide
stakeholders with information about the quality of the
software product or service under test.”

•A typical test involves input data and a comparison of the
output. (More next lecture!)

•Note: unless your input domain is finite, testing does not
prove the absence of all bugs.

•Testing gives you confidence that your implementation
adheres to your specification.

13

Testing in Vandy CS Courses

•CS 1100/1101: “Introduction to Programming”

•1 main() function == 1 test

•For each test
• Run the program, check output
• But you didn’t think about correct output ahead of time

14

Testing in Vandy CS Courses

•CS 2201: Program Design and Data Structures

•1 input file == 1 test

•For each test
• Pipe input to correct solution, save output
• For each buggy solution

• Pipe input to buggy solution, diff output with result from correct solution
• If outputs differ, a bug is exposed!

15

Testing in Vandy CS Courses

•CS 2201: Program Design and Data Structures

•1 function with assert() == 1 test

•For each test
• Run test against correct solution

• Throw out the test if it fails

• For each buggy solution
• Run test against buggy solution
• If assertion fails, a bug is exposed!

16

Discussion: Vandy CS Testing

•Consider: What are the pros and cons of each?

•Recall
• 1100/1101: 1 main() function == 1 test; check output

• 2201: 1 input file == 1 test; output diff

• 2201: 1 function with assert() == 1 test; assertion failure

17

Testing: Inputs and Outputs

•For 1100/1101, students write program inputs, but not
expected outputs

•For 2201, students write program inputs and also expected
outputs

•In real life, you rarely have an already-correct
implementation of your program

•Testing with random inputs (fuzz testing) can help detect
“bad things” bugs (segfaults, memory errors, crashes, etc.)
• But does not provide full expected outputs

18

Testing Concepts

•Regression Testing

•Unit Testing

•XUnit

•Test-Driven Development

• Integration Testing

•Mocking

•Fuzz testing

•Penetration testing

19

Regression Testing (in one slide)

•Have you ever had one of those “I swear we've seen and
fixed this bug before!” moments?
• Perhaps you did, but someone else broke it again
• This is a regression in the source code

•Best practice: when you fix a bug, add a test that
specifically exposes that bug
• This is called a regression test
• It assesses whether future implementations still fix the bug

20

Regression Testing Story

// Dear maintainer:
//
// Once you are done trying to 'optimize' this routine,
// and have realized what a terrible mistake that was,
// please increment the following counter as a warning
// to the next guy:
//
// total_hours_wasted_here = 42
https://stackoverflow.com/questions/184618/what-is-the-best-
comment-in-source-code-you-have-ever-encountered/482129#482129

21

https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129
https://stackoverflow.com/questions/184618/what-is-the-best-comment-in-source-code-you-have-ever-encountered/482129#482129

Unit Testing and Frameworks

• In unit testing, “individual units of source code,
sets of one or more computer program modules
together with associated control data, usage
procedures, and operating procedures, are tested
to determine whether they are fit for use.”

•Modern frameworks are often based on SUnit (for
Smalltalk), written by Kent Beck
• Java JUnit, Python unittest, C++ googletest, etc.

•These frameworks are collectively referred to as
xUnit

22

xUnit Features

•Test cases “look like other code”
• They are special methods written to return a boolean or raise

assertion failures

•A test case discoverer finds all such tests

•A test case runner chooses which tests to run

23

xUnit Definitions

•In xUnit, a test case is
• A piece of code (usually a method) that establishes some

preconditions, performs an operation, and asserts postconditions

•A test fixture
• Specifies code to be run before/after each test case
• Each test is run in a “fresh” environment

•Special assertions
• Check postconditions, give helpful error messages

24

Python unit test Example

25

Python unit test Details

•See Python unittest documentation:
• https://docs.python.org/3/library/unittest.html

26

https://docs.python.org/3/library/unittest.html

Unit Testing Advantages

•Unit testing tests features in isolation
• In the previous example, our test for zap() tested only the zap()

method
• Advantage: when a test fails, it is easier to locate the bug

•Unit testing tests are small
• Advantage: smaller test are easier to understand

•Unit testing tests are fast
• Advantage: fast tests can be run frequently

27

Test-Driven Development

•“Test-driven development is a software development
process that relies on the repetition of a very short
development cycle: requirements are turned into very
specific test cases, then the software is improved so that the
tests pass.”

•Write a unit test for a new feature
• When you run the test, it should fail

•Write the code that your unit test case tests

•Run all available tests
• Fix anything that breaks; repeat until no tests fail

•Go back to step 1
28

Test-Driven Development

•“Test-driven development is a software development
process that relies on the repetition of a very short
development cycle: requirements are turned into very
specific test cases, then the software is improved so that the
tests pass.”

•Write a unit test for a new feature
• When you run the test, it should fail

•Write the code that your unit test case tests

•Run all available tests
• Fix anything that breaks; repeat until no tests fail

•Go back to step 1
29

Integration Testing

•Typically, any feature can be made to work in isolation

•What happens when we put our unit-tested features
together into a larger program?

•Does our application work from start to finish?
• “End-to-end” testing

•Integration testing combines and tests individual software
modules as a group.

30

Integration Testing Examples

•Integration testing is application-specific

•CS Classes
• Run main program with input file

•Web and GUI Applications
• Use a testing framework (or harness) that lets you simulate user

clicks and other input

•Systems Software
• Use a testing framework that lets you simulate disk and network

failures (cf. Chaos Monkey later)

33

Creative Integration Testing Examples

•For video games, you might write an AI to play
• Bayonetta https://www.platinumgames.com/official-

blog/article/6968

•Or have players use gaze-detecting goggles
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability/

“We see … modern eye tracking technology as a future standard in
modern QA teams to improve the overall quality of game
experiences.”

- Markus Kassulke, CEO, HandyGames

34

https://www.platinumgames.com/official-blog/article/6968
https://www.platinumgames.com/official-blog/article/6968
https://www.tobiipro.com/fields-of-use/user-experience-interaction/game-usability/

Trivia: Computer Science

•This American Turing-award winner is known both for
Byzantine fault tolerance (distributed computing) and
also object-oriented type systems (programming
languages). The eponymous substitution principle
states that an object of a subclass can be used
whenever an object of a superclass is expected.

35

Trivia: Computer Science

•This American Turing-award winner is known both for
Byzantine fault tolerance (distributed computing) and
also object-oriented type systems (programming
languages). The eponymous substitution principle
states that an object of a subclass can be used
whenever an object of a superclass is expected.

36

Barbara Liskov

Psychology: Confirmation Bias

•Confirmation bias is the tendency to search for,
interpret, favor, and recall information in a way that
affirms one's prior beliefs or hypotheses. It includes a
tendency to test ideas in a one-sided way, focusing on
one possibility and ignoring alternatives.

•It is so well-established that experimental evidence is
available in many flavors

• [R Nickerson. (1998). Confirmation Bias: A Ubiquitous Phenomenon in Many Guises. In
Review of General Psychology, 2(2):175-220.]

42

Psychology: Confirmation Bias
(each subclaim has its own studies)

•Restriction of attention to a favored hypothesis

•Preferential treatment of evidence supporting existing
beliefs

•Looking only or primarily for positive cases

•Overweighting positive confirmatory instances

•Seeing what one is looking for

•Favoring information acquired early

43

Psychology: Confirmation Bias

•Implications for SE:

•Policy Rationalization justifies policies to which an
organization has already committed. “Once a policy has
been adopted and implemented, all subsequent activity
becomes an effort to justify it.”

•Theory Persistence involves holding to a favored idea long
after the evidence against it has been sufficient to persuade
others who lack vested interests.

•Idea or policy = any SE process decision.

44

Targeting Hard-To-Test Aspects

•What if we want to write unit or integration tests for some
module/function/class, but it has expensive dependencies?

•Discuss: What are examples of things that are hard to test
because they require extensive dependencies or entail too
much cost?

45

Mocking

•“Mock objects are simulated objects
that mimic the behavior of real
objects in controlled ways.”

•In testing, mocking uses a mock object to test the behavior
of some other object.
• Analogy: use a crash test dummy instead of real human to test

automobiles

46

Scenario 1: Web API Dependency

•Suppose we're writing a single-page web app

•The API we'll use (e.g., Speech to Text) hasn't been
implemented yet or costs money to use

•We want to be able to write our frontend (website) code
without waiting on the server-side developers to implement
the API and without spending money each time

•What should we do?

47

Mocking Dependencies

•Solution: make our own “fake” (“mock”) implementation of
the API

•For each method the API exposes, write a substitute for it
that just returns some hard-coded data (or any other
approximation)

•This technique was used to design and test parts of the
autograder website

48

Scenario 2: Error Handling

•Suppose we're writing some code where certain kinds of
errors will occur sporadically once deployed, but “never” in
development
• Out of memory, disk full, network down, etc.

•We'd like to apply the same strategy
• Write a fake version of the function …

•But that sounds difficult to do manually
• Because many functions would be impacted
• Example: many functions use the disk

49

Mocking Libraries: Two Approaches

•Before running the program (“static”)
• Combine modularity/encapsulation with mocking

• Move all disk access to a wrapper API, use mocking there at
that one point (coin flip → fake error)

•While running the program (“dynamic”)
• While the program is executing, have it rewrite itself and

replace its existing code with fake or mocked versions

• Let's explore this second option in detail

50

Dynamic Mocking Support

•Some languages provide dynamic mocking libraries that
allow you to substitute objects and functions at runtime
• For one test, we could use a mocking library to force another

line of code inside our target function to throw an exception
when reached

•This feature is available in modern dynamic languages
(Python, javascript, etc.)
• GoogleTest used to require a special base class for this sort of

mocking, now it uses macros (for C++)

51

Dynamic Mocking Example
import unittest
from unittest import mock

def lowLevelOp():
might fail for users
example: no memory
pass

def highLevelTask():
try:
lowLevelOp()
return True

except MemoryError:
return False

52

class HLTTestCase(unittest.TestCase):
def test_LLO_no_memory(self):
def mocked_memory_error():
raise MemoryError('test :-(')

with mock.patch(# look here!
'__main__.lowLevelOp',
mocked_memory_error):

self.assertFalse(highLevelTask())

if __name__ == '__main__':
unittest.main()

See https://docs.python.org/3/library/unittest.mock.html

See https://docs.python.org/3/library/unittest.mock.html#patch

https://docs.python.org/3/library/unittest.mock.html
https://docs.python.org/3/library/unittest.mock.html#patch

Dynamic Mocking Disadvantages

•Test cases with dynamic mocking can be very fragile
• What if someone moves or removes the call to lowLevelOp()

that we mock.patch'd earlier?

•Dynamic mocking requires good integration tests
• If we mock dependencies, we need to be extra careful that our ADTs

play nicely together

•Dynamic mocking libraries have a learning curve
• In Python, it can be hard to determine the correct value for 'path' in

mock.patch (etc.)
• Error messages are often cryptic (modified program)

54

Fuzz Testing (Fuzzing)

•How can we generate many different inputs fast?

• Input massive amounts of random data ("fuzz"), to
the test program in an attempt to make it
crash/expose bad behavior

Fuzz Testing (Fuzzing)

• Barton Miller, University of Wisconsin, 1989
• A night in 1988 with thunderstorm and heavy rain

• Connected to his office Unix system via a dial up connection

• The heavy rain introduced noise on the line

• Crashed many UNIX utilities he had been using everyday

• He realized that there was something deeper

• Asked three groups in his grad-seminar course to implement this idea of fuzz
testing:
• Two groups failed to achieve any crash results!

• The third group succeeded! Crashed 25-33% of the utility programs on the seven Unix
variants that they tested

Fuzz Testing (Fuzzing)

• Approach
• Generate random inputs

• Run lots of programs using random inputs

• Identify crashes of these programs

• Correlate random inputs with crashes

• Errors found: Not checking returns, Array indices out of bounds, not checking
null pointers, …

• American Fuzzy Lop (AFL) ---> HW2!!
• Fuzzing by applying various modifications to the input file

Penetration Testing (Pen Testing)

• Security‐oriented testing
• Typically performed on a whole IT system, not just a single program

• Good intentioned
• Performed by white hackers

• With the goal of reporting found vulnerabilities

• Can be part of a security audit

• National Cyber Security Center definition:
"A method for gaining assurance in the security of an IT system by attem
pting to breach some or all of that system's security, using the same tool
s and techniques as an adversary might."

Quality Assurance and
Development Processes

•How can we assure quality before, during and after writing
code?

•What if we don't have enough resources?
• Tune in next time!

•Further Watching:
• “So You Want To Be In QA?”

• https://www.youtube.com/watch?v=ntpZt8eAvy0

59

https://www.youtube.com/watch?v=ntpZt8eAvy0

Questions?

•Next exciting episode:
• Test Suite Quality Metrics

• HW1a due this Sunday

• You should email me if you
are not on Piazza and/or
autograder

60

	Slide 1
	Slide 4: One-Slide Summary
	Slide 5: Story So Far
	Slide 7: Quality Motivation
	Slide 8: Internal-Facing Quality
	Slide 9: External-Facing Quality
	Slide 10: Doing The Right Thing
	Slide 11: Doing The Right Thing
	Slide 12: Practical Solution: Testing
	Slide 13: Testing
	Slide 14: Testing in Vandy CS Courses
	Slide 15: Testing in Vandy CS Courses
	Slide 16: Testing in Vandy CS Courses
	Slide 17: Discussion: Vandy CS Testing
	Slide 18: Testing: Inputs and Outputs
	Slide 19: Testing Concepts
	Slide 20: Regression Testing (in one slide)
	Slide 21: Regression Testing Story
	Slide 22: Unit Testing and Frameworks
	Slide 23: xUnit Features
	Slide 24: xUnit Definitions
	Slide 25: Python unit test Example
	Slide 26: Python unit test Details
	Slide 27: Unit Testing Advantages
	Slide 28: Test-Driven Development
	Slide 29: Test-Driven Development
	Slide 30: Integration Testing
	Slide 33: Integration Testing Examples
	Slide 34: Creative Integration Testing Examples
	Slide 35: Trivia: Computer Science
	Slide 36: Trivia: Computer Science
	Slide 42: Psychology: Confirmation Bias
	Slide 43: Psychology: Confirmation Bias (each subclaim has its own studies)
	Slide 44: Psychology: Confirmation Bias
	Slide 45: Targeting Hard-To-Test Aspects
	Slide 46: Mocking
	Slide 47: Scenario 1: Web API Dependency
	Slide 48: Mocking Dependencies
	Slide 49: Scenario 2: Error Handling
	Slide 50: Mocking Libraries: Two Approaches
	Slide 51: Dynamic Mocking Support
	Slide 52: Dynamic Mocking Example
	Slide 54: Dynamic Mocking Disadvantages
	Slide 55: Fuzz Testing (Fuzzing)
	Slide 56: Fuzz Testing (Fuzzing)
	Slide 57: Fuzz Testing (Fuzzing)
	Slide 58: Penetration Testing (Pen Testing)
	Slide 59: Quality Assurance and Development Processes
	Slide 60: Questions?

