S0 WE'LL CALL | NEED COMTEXT. 50 WE HAVE TWO IT ALL BEGAN FOUR
THIS AP, THEN— THE 10,000-FOOT 4 | APPLICATIONS THAT—~ BILLION YEARS AGD

WAIT WAIT NO. NO. PULL ON A PLANET CALLED
WAIT, THIS IS WAY BACK, THE
I\ TOO LOW-LEVEL. \ AZ) REALLY HIGH-

oK, THAT'S
HIGH ENOUGH,

@=h, LEVEL VIEW.

Al

Copyright 2008 Hans Bjordahl

Eug Bash by Hans Bjordahl httpzsS . bugbash.nety

Process, Risk, and Scheduling

PRACTICES

g g
WJE WILL BE ADOPTING |2 IF EVERYONE 1S &
THE BEST PRACTICES |2 DOING IT, BEST : STOP MAKING
IN OUR INDUSTRY, |¢ P%i&?%‘:‘i &g IEE ; MEDIOCRITY
JUST LIKE EVERYONE |3 3 I
ELSE. g MEDIOCRE. E SOUND BAD!
1 E E
1_|‘.— 5 < SORRY.
Il sesT 13- 5 g
N :
L — E—— x =
g "

Homework

* HWO: due this Sunday

* Class cap size is increased to 50
* Autograder

* Team up or not?

* Environment
e Can |l use XYZ instead of Ubuntu 16.047?

* Nothing “bad” will happen: | will not fail you in this class; you are responsible for the
development environment

 Why do we still use Ubuntu 16.04 even though Ubuntu has stopped supporting it?
* Historic reason
* Thisis a common challenge in industry as well: legacy programming lesson

One-Slide Summary

* A software development process organizes activity into distinct
phases (e.g., design, coding, testing, etc.).
* Processes can increase efficiency, but are often implemented poorly.

* Effort estimation is based on historical information
* Modeling or experience both used for planning
* Risk leads to uncertainty, mitigated by identification and minimization

* A project plan (milestones, deliverable) includes all considerations of risk
management

* Measuring progress is difficult

Process

. A software development process (a.k.a software development life
cycle or software development model) divides software development

into distinct phases to improve design, product, and project
management.

. Process is the set of activities and associated results that produce a
software product IWELCOME{TO AGILE
. Examples include the waterfall model, : %-
spiral development, agile development, Sl o

and extreme programming. ﬁ!’

"
~ WHERE THE STORIES ARE MADE UP

{AND THE POINTS DONT, MATTER K%
6

AL

Richard Feynman's

Problem Solving Algorithm
!

1.Write down the problem.
2.Think real hard. go3 b8

3.Write down the solution.) I
4 __OCCURSE-'

‘.‘\/cv’

- As facetiously suggested by Murray Gell-Mann, a
colleague of Feynman, in the New York Times

I think you should be a little
more specific, here in Step 2

A Straw Software Process

1. Discuss the software that needs to be written

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

1. Discuss the software that needs to be written

2. Write some code

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

1. Discuss the software that needs to be written

2. Write some code
3. Test the code to identify the defects

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

10

A Straw Software Process

pwoN e

Write some code
. Test the code to identify the defects
Debug to find causes of defects

Discuss the software that needs to be written

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

S
E'(‘L,‘z,‘.!',r

A Straw Software Process

Write some code

. Test the code to identify the defects
Debug to find causes of defects

Fix the defects

Discuss the software that needs to be written

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

S
E'(‘L,‘z,‘.!',r

A Straw Software Process

Discuss the software that needs to be written
Write some code
. Test the code to identify the defects

Debug to find causes of defects

:iX the defeCtS | once had complaints tha't a process was takln‘g
too long. no way to make it faster without gutting

the whole system, so i added a progress bar,

> v W e

f not dOne, return to Step 1 which actually made it take 5% longer, but the

complaints stopped.

Watertall Model

. In the waterfall software development model,
the following phases are carried out in order: Waterfall Model

. System and software requirements Expectation Reality
Elicited from customer, captured in a document
. Analysis
Derive models, schema, and business rules
. Design
Software architecture
. Coding
Development, proving, and integration of software
. Testing

Systematic discovery and debugging of defects

. Operations

Installation, migration, support, and maintenance of
complete systems

14

Tell Me Lies

| IF | ID | EX |MEM

v | IF | D | EX WB |

- ‘ F | ID MEM | WB
| II: E}f‘- MEM WB * Product requirements document

D | EX [MEM| WB pesion | ST

15

Spiral Development Model

. The spiral software process model focuses on the construction of an
increasingly-complete series of prototypes while accounting for risk.

A Cumulative cost

1.Determine Progress 2. Identify and
objectives f,_f—-"‘————‘*- resolve risks

t Operational
/_\\Prﬂtmype:l. Prototype 2 | prototype
alion ” aft

Review

Implementation

4- P|al"| the Release
next iteration 3. Development
and Test

Agile Development Model

* Agile: ability to create and

respond to change, deal with
uncertain and turbulent 5,
g Uhsg -
environment e
* Agile software development is -3
an umbrella term (more than)
for a set of frameworks —
-es ing :
(SCI’U m, extreme Interation 2
programming, etc.) and
practices (pair programming,

test-driven development,
stand-ups, sprints /interation,

etc.)
https://www.agilealliance.org/agile101/

Agile Dev

* Agile: ability to cre
respond to change
uncertain and turb
environment

* Agile software dev
an umbrella term 1
frameworks and pi

12 principles of Agile development

~ o~
[@
Our highest priority is to satisfy
the customer through early and

continuous delivery of valuable
software.

+v0O0ono
ooo

Businesspeople and developers
must work together daily
throughout the project.

Working software is the primary
measure of progress.

@

Simplicity —the art of maximizing
the amount of work not done—is
essential.

ICONS FROM TOP ROW LEFT TO RIGHT: DESIGNER/GETTY IMAGES (1, 2,

Welcome changing requirements,
even late in development. Agile
processes harness change for the

customer’s competitive advantage.

Build projects around motivated
individuals. Give them the
environment and support they
need, and trust them to get the job
done.

Agile processes promote
sustainable development.
The sponsors, developers and
users should be able to maintain
a constant pace indefinitely.

ota

The best architectures,
requirements and designs emerge
from self-organizing teams.

https://www.agilealliance.org/agile101/12-principles-behind-the-

agile-manifesto/

SOURCE: AGILE MANIFESTO (HTTES /8 GILEMANIFESTO.0RG/)

<5

Deliver working software
frequently, from a couple of weeks
to a couple of months, with a
preference to the shorter timescale.

(0D

The most efficient and effective
method of conveying information to
and within a development team is
face-to-face conversation.

Continuous attention to technical
excellence and good design
enhances agility.

ey

At regular intervals, the team
reflects on how to become more
effective, then tunes and adjusts

its behavior accordingly.

7-8); STUDIDLYGETTY IMAGES (35, 11); PRESSURELIA/GETTY IMAGES (6, 12)f SLALOMBYGETTY IMAGES (10)

£2023 TECHTARGET. ALL RIGHTS RESERVED

y

Testing

Req Analysis

Interation 3

Activity Effort over Time

100%

Percent

of
Effort

0%

100% productive coding?

Project
beginning

Time

Project
end

19

Activity Effort over Time

[0)
100% Trashing/ Rework

Percent
of
Effort

0%

Productive Coding

Project
beginning

Time

Project
end

20

|dealized View

[0)

100% Trashing/ Rework
Percent
of Productive Coding
Effort

Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,
Developmentand Integration Plan
0%

Project Time Project
beginning end

21

Result of Failing to Plan

100%
Trashing/ Rework
Percent
of
Effort
Productive Coding
0%

Project Time Project
beginning end 22

Example Process Issues and Outcomes

Requirements: Mid-project informal agreement to changes suggested by customeror
manager
. —» Project scope expands 25-50%

Quality Assurance: Late detection of requirements and design issues. Test-debug-
reimplement cycle limits development of new features.

. — Release with known defects

Defect Tracking: Bug reports collected informally
. —» Bugs forgotten

System Integration: Integration of independently-developed components atthe end of
the project
. — Interfaces out of sync

Source Code Control: Accidentally overwritten changes
. —» Lost work

Scheduling: When project is behind, developers are asked weekly for new estimates
. — Project falls further behind

23

Survival Mode

. Missed deadlines - “solo development mode”, developers stop
interacting with testers, technical writers, managers, etc.

. “The producers even set a deadline; they gave a specific date for the end of the crunch,
which was still months away from the title's shipping date, so it seemed safe.
That date came and went. And went, and went. When the next news came it was not
about a reprieve; it was another acceleration: twelve hours six days a week, 9am to 10pm.

Weeks passed. Again the producers had given a termination date on this crunch that
again they failed. Throughout this period the project remained on schedule. The long
hours started to take its toll on the team; people grew irritable and some started to get ill.
People dropped out in droves for a couple of days at a time, but then the team seemed to
reach equilibrium again and they plowed ahead. The managers stopped even talking
about a day when the hours would go back to normal.” — EA: The Human Story

24

Desired Allocation

100% Trashing / Rework

Percent
of
Effort

Productive Coding

0%

Project Time Project
beginning end 25

Process Hypothesis

. A process can increase flexibility and efficiency for software
development

. If this is true, an up-front investment (of resources, e.g., “time”) in
process can yield greater returns later

THATS MANAGEMENT
MPI:SJNDSE%.!QJEE FOUL-UP NUMBER TLJO. WE DONT ANTICIPATE
TIMELIME? IT USUALLY HAPPENS ANY MANAGEMENT
ARCOUND THE THIRD MISTAKES.
LWEEK. |
THATS |

Ea-td i PO0E Scott Adomas, inc.fDisL by UFS, Inc.

www. dilbert.com — socottadams®ool.com

eI LRl Mo N
0y S g‘ .l 77/ \ [
J i k. i =l

© Scott Adams, Inc./Dist. by UFS, Inc.

Efficiency: Defect Cost vs. Creation Time

A
Cost to

Correct

Phase That a
Defect Is Created

Fequirements

Architecture

Detailed design

Cotstiniction

Fequirements Architecture Dretailed Construction Iaintenance
design

Phase That a Defect Is Corrected

Copyright 1995 Steven C. WeConnell. Feprinted with pe mraission
from Soffware Project Strvival Guide (Ivhicrosoft Press, 1998).

27

Efficiency: Defect Cost vs. Detection Time

* An IBM report gives an average defect repair cost of
« $25 during coding
« $100 at build time
 $450 during testing/QA
« $16,000 post-release

. [L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]

Trivia: Chemistry

* Which of these chemical reactions would be the hardest to carry out
in a school chemistry class?
 Nitrating cellulose to produce guncotton
3NHNOz+ [CgH702(0H)3]y — [CeH7O2(0OMNO2)3] + 3nH20
* Reacting thermite Xvith iron oxide (2500 °C)

2Al + Feg Og-——hﬁ.lg 03 + 2Fe

* Dissolving bauxite in cryolite to make aluminum
2 AlbOs +3C — 4 Al+3CO;

B{OH), + 2H,0 <====> B{CH), +

Trivia: Chemistry

* The Hall-Héroult process (1886) extracts aluminum from the ore
bauxite. Aluminum is the most abundant metallic element on Earth
but not in its elemental state.

* Before this process aluminum was more expensive than gold or
platinum:

« “Bars of aluminum were exhibited alongside the French crown jewels at the
Exposition Universelle of 1855, and Emperor Napoleon Il of France was said to have
reserved his few sets of aluminum dinner plates and eating utensils for his most
honored guests.”

Psychophysics

. Which two figures have the same # of dots?

- T "..

&
L
L

£
L] * "" :tt "
o

Psychophysics: Weber's Law

. Weber's Law states that “simple differential sensitivity is inversely
proportional to the size of the components of the difference; relative
differential sensitivity remains the same regardless of size."

. Thatis “the perceived change in stimuli is proportional to the [size of]

initial stimuli.” | [

Psychophysics: Weber's Law

. Thatis “the perceived change in stimuli is proportional to the [size of]
initial stimuli.”

. Implication for SE: Things you could notice on small-scale projects are
narder to notice on large-scale projects. Your intuitions (“l can spot
ougs in this”) from small class projects do not carry over.

)
L "- !.‘ * . ™
[L
. ~ e .
o

10 o110

50 190

Psychology

* Consider a hypothetical cleanup scenario involving two hazardous
waste sites X and Y.

» X causes 8 cases of cancer annually (large city)
* Y causes 4 cases of cancer annually (small city)

* Rank these three cleanup approaches:
cAX—4Y > 2.
*B.X—>7.Y—-0.
cC.X—=3.Y—- 3.

Psychology: Zero-Risk Bias

* Three cleanup approaches:
A X—>4.Y —> 2.
B.X—>7.Y—O0.
cC.X—=3. Y- 3.

* “The bias was defined as not ranking the complete-reduction option

[B] as the worst of the three options. (It should be ranked worst
because it saves fewer cancer cases.) 42% of the subjects exhibited

[] \ [] ' [] ”
this "zero-risk' bias.
[Baron; Gowda; Kunreuther (1993). "Attitudes toward managing hazardous waste: What should be cleaned up and who
should pay for it?". Risk Analysis. 13: 183-192.]

Psychology: Zero-Risk Bias

e Zero-risk bias is a tendency to prefer the complete elimination of a risk even
when alternative options produce a greater reduction in risk (overall).

* “42% of the subjects exhibited this zero-risk' bias.”
* Who? 60 CEOs of Oil and Chem Companies, 57 Economists, 94 Environmentalists, 29
Experts on Hazardous Waste, 89 Judges, 104 Legislators.

* Implications for SE: Your managers (and you) are likely to mistakenly favor
risk-reduction strategies that reduce a risk to zero, even to the overall
detriment of the company/product.

TRy

HERE LIES A PSEUNO-SCENTIST

Process Topics

e Estimating Effort
 Risk and Uncertainty

* Planning and Scheduling

WHERE THE WIlD THINGS ARENT_

A ——

39

Estimating Time Costs

* How long would you estimate to develop a ...

« Java Monopoly game (you alone)

* Bank smartphone app (you with a team of four developers, one
with iPhone experience, one with a security background)

e Estimate in eight-hour workdays (20 in a month, 220 per year)

* Approach: break down the task into ~five smaller tasks and estimate
them. Repeat.

Basic Plan: Learn from Experience

EXPERIENCE

It's what lets you recognize a mistake when you make it again.

Constructive Cost Model

* A constructive cost model (cocomo) is a predictive model of time
costs based on project history.

* This requires experience with similar projects.
* This rewards documentation of experience.

* Basically, it's an empirically-derived set of “effort multipliers”. You
multiply the time cost by some numbers from a chart:

Cost Drivers
Product attributes
Required software reliability
Size of application database
Complexity of the product
Hardware attributes
Run-time performance constraints
Memory constraints
Volatility of the virtual machine environment
Required turnabout time
Personnel attributes
Analyst capability
Applications experience
Software engineer capability
Virtual machine experience
Programming language experience
Project attributes
Application of software engineering methods
Use of software tools

Required development schedule

Very Low

0.75

0.70

1.46
1.29
1.42
1.21
1.14

1.24
1.24
1.23

Low

0.88
0.94
0.85

0.87
0.87

1.19
1.13
1.17
1.10
1.07

1.10
1.10
1.08

Ratings

Nominal

1.00
1.00
1.00

1.00
1.00
1.00
1.00

1.00
1.00
1.00
1.00
1.00

1.00
1.00
1.00

High

1.15
1.08
1.156

1.1
1.06
1.15
1.07

0.86
0.91
0.86
0.90
0.5

0.91
0.91
1.04

Very High

1.40
1.16
1.30

1.30
1.21
1.30
1.15

0.71
0.82
0.70

0.82
0.83
1.10

Extra High

1.65

1.66
1.56

43

Can Companies Estimate?

e Study in which 35 companies bid to produce a web information

system. Fourteen submitted a schedule and four were contracted to
build it.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL.35, NO.3, MAY/JUNE 2009 407

Variability and Reproducibility in Software
Engineering: A Study of Four Companies
that Developed the Same System

Bente C.D. Anda, Dag |.K. Sjoberg, Member, IEEE, and Audris Mockus, Member, IEEE

Abstract—The scientific study of a phenomenon requires it to be reproducble. Mature engineering industries are recognized by
projects and products that are, to some extent, reproducble. Yet, reproduchbiiity in software engineering (SE) has not been
nvestigated thoroughly, despite the fact that lack of reproducibility has both practical and scentitic consequences. We report a
bngitudnal multiple-case study of variations and reprodudbility in software development, from bidding 1o deployment, on the basis of
the same requirement spedfication. In a cal for tender to 81 companies, 35 responded. Four of them developed the system
independently. The firm prce, planned schedule, and planned development process, had, respectively, “low,” “low,” and ‘medium”
roproducibities. The contractor's costs actual lead time, and schedule overrun of the projeds had, respectively, *medium.” high,” and
“low” reproduciities. The quality dimensions of the delivered products, refabiy, usabity, and maintainabilty had, rospectively,
“low,” “high,” and Yow" reproducibilities. Moreover, vanabiity for predictable reasons is also included in the notion of reproducibility. We
found that the observed outcome of the four development projects matched our expectations, which were formulated partially on the
basis of SE foklorm. Nevertheless, achieving more reproducbility in SE remains a great challenge for SE research, education, and
ndustry.

Index Terms—Software engineering life cycle, software quality, software project success, software process, multple-case study.
+

What patterns
can you spot?
* A&D: Analysis & Design

 Planned effort on A&D in
hours

Company | Firm price with- | Time sche- | A&D in bids Planned effort | Emphasis
out VAT (Euro) dule (davs) on A&D (%) on A&D

1 2630 14 | Briet(2)

2 4380 Briefl (2)

3 4880 Very brief (1)

- 4970 28 | Brief (2) 30 5.0

3 8750 18 | Detailed (3) 7 3.7

6 9940 None (0) 40 4.0

7 11810 Brief (2) 0 2.0

3 11880 94 | Detailed (3) 26 5.6

9 12190 77 | Very detailed (4) 5 4.5
10 16630 Brief (2) 12 3.2
11 18130 Very briet (1)
12 18510 91 | Brief (2) 20 4.0
13 20000 30 | Detailed (3) 28 5.8
14 20020 Very brief (1) 50 6.0
15 21090 Very brief (1) 44 5.4
16 25310 Very detailed (4) 11 5.1
17 33250 49 | Detailed (3) 20 5.6
18 25810 Very brief (1)

19 25940 Brief (2) 20 4.0
20 25980 Very detailed (4) 8 4.8
21 26880 45 | Detailed (3)
22 28700 77 | Very detailed (4) 10 5.0
23 28950 42 | Brief (2) 30 5.0
24 29000 Brief (2)
25 33530 Brief (2)
26 33880 77 | Detailed (3) 10 4.0
27 33900 Detailed (3) 11 4.1
28 34500 Very brief (1) 36 4.6
29 38360 63 | Detailed (3) 20 5.0
30 45380 Detailed (3) 10 4.0
il 52310 Brief (2) 27 4.7
32 56900 Detailed (3) 14 4.4
33 60750 Briefl (2) 43 6.3
34 69060 49 | Detailed (3) 23 3.3
35 69940 Detailed (3)] 3.6

Results

Company A | Company B Company C Company D
Nationality Norwegian Norwegian Norwegian International
Ownership Private By employees By employees | Listed on exchanges
Location Oslo Oslo Bergen Oslo + 20 countries
Size Appr. 100 Appr. 25 Appr. 8 Appr. 13,000 worldwide
Firm price €20,000 €45,380 €8,750 €56,000
Agreed time schedule 55 days 73 days 41 days 62 days
Planned effort on A&D 28% 20% 7% 23%
Dimensions Company A | Company B | Company C | Company D
Project Contractor-related costs 90 hours 108 hours 155 hours 85 hours
Actual lead time 87 days 90 days 79 days 65 days
Schedule overrun 58% 23% 93% 5%
Product Reliability Good Good Poor Fair
Usability Good Fair Fair Good
Maintainability Good Poor Poor Good

“We found little reproducibility in the firm price of bids, and in particular,
we showed that the variation in firm price was about three times greater
than in the more mature domain of road construction. ... due partly

to the paucity of standards for describing process and product quality.”

Risk and Uncertainty

* Risk management is the identification, assessment, and prioritization
of risks, followed by efforts to minimize, monitor and control
unfortunate event outcomes and probabilities.

* Risk management is a key project management task. Examples:

47

Risk and Uncertainty

* Risk management is the identification, assessment, and prioritization
of risks, followed by efforts to minimize, monitor and control
unfortunate event outcomes and probabilities.

* Risk management is a key project management task. Examples:

o Staff illness or turnover, product is too slow, competitor introduces
a similar product, etc.

48

49

Uncertainty Reduction Over Time

100%;
5%
0%
S.iEE TR0
Estimate
Growrth
(i1 lines of 0
SOLMCE
code) %
- 50%;
-7 5%
-100%;
F F F F 1 A A
Irdtial Amproved Reguirements Architecture Dietailed Product
product product desion complete

defifition defirition

Copyright 1998 Steven C. MeConnell. Eeprinted with penmission from Sofware Project Swrvival Guide (Microsoft Press, 1998,

“Innovation”

Innovation and Risk

* Most software projects are innovative
* Google, Amazon, EBay, Netflix
« Autonomous vehicles, robotics, biomed
« Natural language processing, graphics

e Routine projects (how, not ten years ago)
« E-Commerce website, adaptive control systems (e.g., thermostat), etc.

* As part of the innovation cycle, routine tasks are automated ... leaving only
innovative ones!

51

No Catch-All Solution

* Address risk early

 Selectively innovate to increase value while minimizing risk
(i.e., focus risk where needed)

e Use iteration and feedback (e.g., prototypes) CANTTELLIFTHENEW GUYIS JUST

 Estimate likelihood and consequences INEXRERIENCED
» Requires experienced project leads
* Rough estimates (e.g., <10%, <25%) are OK
* Focus on top ten risks

* Have contingency plans

Examples of Risk Management Strateg

Organizational financial
problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business and presenting reasons why cuts to the
project budget would not be cost-effective.

Recruitment problems

Alert customer to potential difficulties and the possibility of
delays; investigate buying-in components.

Staff illness

Reorganize team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective components

Replace potentially defective components with bought-in
components of known reliability.

Requirements changes

Derive traceability information to assess requirements change
impact; maximize information hiding in the design.

Organizational
restructuring

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Database performance

Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying-in components; investigate use of a program
or test generator.

€S

53

Planning

* A project should plan time, cost and resources adequately to estimate
the work needed and to effectively manage risk during project
execution.

 This includes scoping the work, estimating time costs, developing

the schedule and budget, mitigating risks, developing quality
assurance measures, etc.

Remorse pinned me against the seat for one_long sec-
ond. What had I just done to Jacob?
But remorse couldn’t hold me very long.

N THAT CASE, USE A DIFFERENT WORD TO DESCRIBE THE SECOND.

54

Difficulties in Software Planning

* Typically a one-time endeavor

(unigue wrt. goals, constraints, organization, etc.)

* Typically involves an innovative technology

* Intangible results (intermediate or final) mean progress may be hard

to measure

» Software projects tend to fail more often than other industrial

projects

—

A B

v
I
l

.

-
v

\‘3{}\

55

Ul

Measuring Progress?

“I’'m almost done with the app. The frontend is almost
fully implemented. The backend is fully finished except
for the one stupid bug that keeps crashing the server. |
only need to find the one stupid bug, but that can

probably be done in an afternoon. We should be ready
to release next week.”

static int IsNegative(float arg)
{
char*p = (char*) malloc(20);
sprintf (p, "%£", arg);

return p[0]=="'-";
\

Milestones and Deliverables

* Milestones and deliverables make intermediate progress observable,
especially for software

* A milestone is a clean end point of a (sub)task
» Used by the project manager
* Reports, prototypes, completed subprojects, etc.
« “80% done” is not a suitable milestone

e Deliverables are results for the customer
 Used by the customer, outward facing

|dealized Project Planning

Identify constraints

Estimate project
parameters

Define milestones

Create schedule

Budget, Check progress

Personel,
Deadlines

Reestimate project

parameter
activities bezin

Refine schedule

Problem?

renegotiate constraints Technical review

yes

new
feature
requests

58

Gantt Diagram

457 1157 187 2577 1/8 /R 15/8 28 20/8 59 129 19/4
& St

T4 L
T1 |
T2 |

M1

7 |]

T3 | |

M5 A : '
TR’
YEX
M2 4
Ta |
TS5
M4
T9 [|
M7 A
T10 | '
& M5
rii | '
@ ME
riz
* t*'ml:i'

59

Scheduling

* Inaccurate predictions are normal -
update

* The “almost done” problem: the last 10%
of work takes 40% of the time

* Avoid depending entirely on developer
estimates

100%

90%

% completed

reported
progres

time

60

How does Microsoft solve this?

Description
Reports of crashes or other problems.
Reports opened, closed, etc.
Understandability of code.
Density of similar or identical code fragments.
Dependencies Modularity of code.
Structure of code,
User benchmarks.
Maps engineers to the tasks they are best at.
Predicted defect density.
Bug fixes / refactoring / feature additions.
Arc and Block coverage of test cases,
Amount and completeness of documentation.
Density of branching structure.
Engineers currently contributing.
amount of code changed between builds.
Distribution of changes by author,

Time between software written and integrated.

Name
Failure Information
Bug Reports
Readability
Code Clones
Dependencies
Architecture
Telemetry
Expertise
Failure Models
Change Type
Test Coverage
Documentation
Complexity
Engineering Activity
Churn
Ownership

Velocity

i

Percent who currently use, or would use.

Il

m Developers use
Developers would use
| Managers use

m Managers would use

75% 100%

3
g

25%

Fig. 5. Percent of managers and developers who reported that they either use or would use (if available) each of the given indicators in making
decisions relevant to their engineering process.

Story So Far

* Software processes can help, but to use them we need project planning,
which needs effort estimation, which is complicated by uncertainty, which
stems from risk and a lack of data.

* So ... we don't know anything?

. Sta\étuned for next time for measurement, a potential solution to our
problems.

e HWO due this Sunday
e HW6 — start early: GitHub, research topics

	Slide 1
	Slide 4: Homework
	Slide 5: One-Slide Summary
	Slide 6: Process
	Slide 7: Richard Feynman's Problem Solving Algorithm
	Slide 8: A Straw Software Process
	Slide 9: A Straw Software Process
	Slide 10: A Straw Software Process
	Slide 11: A Straw Software Process
	Slide 12: A Straw Software Process
	Slide 13: A Straw Software Process
	Slide 14: Waterfall Model
	Slide 15: Tell Me Lies
	Slide 16: Spiral Development Model
	Slide 17: Agile Development Model
	Slide 18: Agile Development Model
	Slide 19: Activity Effort over Time
	Slide 20: Activity Effort over Time
	Slide 21: Idealized View
	Slide 22: Result of Failing to Plan
	Slide 23: Example Process Issues and Outcomes
	Slide 24: Survival Mode
	Slide 25: Desired Allocation
	Slide 26: Process Hypothesis
	Slide 27: Efficiency: Defect Cost vs. Creation Time
	Slide 28: Efficiency: Defect Cost vs. Detection Time
	Slide 31: Trivia: Chemistry
	Slide 32: Trivia: Chemistry
	Slide 33: Psychophysics
	Slide 34: Psychophysics: Weber's Law
	Slide 35: Psychophysics: Weber's Law
	Slide 36: Psychology
	Slide 37: Psychology: Zero-Risk Bias
	Slide 38: Psychology: Zero-Risk Bias
	Slide 39: Process Topics
	Slide 40: Estimating Time Costs
	Slide 41: Basic Plan: Learn from Experience
	Slide 42: Constructive Cost Model
	Slide 43
	Slide 44: Can Companies Estimate?
	Slide 45
	Slide 46: Results
	Slide 47: Risk and Uncertainty
	Slide 48: Risk and Uncertainty
	Slide 49
	Slide 50: Uncertainty Reduction Over Time
	Slide 51: Innovation and Risk
	Slide 52: No Catch-All Solution
	Slide 53: Examples of Risk Management Strategies
	Slide 54: Planning
	Slide 55: Difficulties in Software Planning
	Slide 56: Measuring Progress?
	Slide 57: Milestones and Deliverables
	Slide 58: Idealized Project Planning
	Slide 59: Gantt Diagram
	Slide 60: Scheduling
	Slide 61: How does Microsoft solve this?
	Slide 62: Story So Far

