
Final Exam Review
CS 4278/5278: Principles of Software Engineering

Zihan Fang
Graduate Teaching Assistant
Zihan Fang@vanderbilt.edu

1

2

HW6 b
● Sunday April 21

● The grace period and late

policy do not apply

3

Exam 2
● Thursday April 18

● Class Time (75 min)

○ 1:15 PM - 2:30 PM

○ FGH 134

● TA-Proctored

● Paper-based, written exam

4

Exam 2
● Thursday April 18

● Class Time (75 min)

○ 1:15 PM - 2:30 PM

○ FGH 134

● TA-Proctored

● Paper-based, written exam

NO ChatGPT
NO collaborations/communications (e.g. online chatting)

5

Exam Structure

● 100 points in total + 5 extra credits

● 5 multipart questions (10-20% are covered in Exam 1)

● 1 multipart bonus

● Short answer, answer bank, fill in the blank

● Open-book, open-notes, open-internet

6

Exam Topics
● Delta Debugging

● Requirements and Specifications

● Maintainability and Productivity

● Fault Localization

● Automated Programming Repair

● Profiling

Delta Debugging
● Delta debugging is an automated debugging approach that finds a

one-minimal interesting subset of a given set.

● Delta debugging is based on divide and conquer and relies on critical

assumptions (monotonicity, unambiguity, and consistency).

● It can be used to find which code changes cause a bug, to minimize

failure inducing inputs, and even to find harmful thread schedules.

7

Delta Debugging
Remember the three main assumptions around Delta Debugging…

● Monotonicity - if X is interesting, set of X & anything is interesting

● Unambiguity - if X & Y are interesting, intersection of X & Y is

interesting

● Consistency - X is either interesting or not interesting

8

Delta Debugging

9

Delta Debugging

10

Delta Debugging

11

Delta Debugging

12

Delta Debugging

13

Delta Debugging

14

Delta Debugging

15

Delta Debugging

16

Delta Debugging

17

Requirements
● Requirements say what the system will do, not how it will do it

● System requirements: relationships between monitored and

controlled variables

● Software requirements: relationship between inputs and outputs

● Produce formal software requirement models:

○ Functional requirements

○ Non-functional requirements (quality requirements)

18

Readability
Readability is a human judgment of how easy a text is to understand

● Avoid long lines

● Avoid having many different identifiers in the same region of code

● Do include comments

● Fully blank lines may matter more than indention

19

Code Inspection and the Brain
● Comprehending code is where developers spend most time

● What makes code easy to read? Should we ask programmers?

● Self-reporting is unreliable
○ High variability and low mean validity

20

Code Inspection and the Brain
Summary of Techniques:

● fMRI
● fNIRS
● Eye tracking
● Smartwatch data
● Surveys
● Interviews

21

Productivity
● Experiment with system response time

○ Short term mental memory buffer can be disrupted by increased system response
time

○ Faster response time enabled significant performance enhancement
○ Cost of upgrading a processor can be more than justified by savings in user time

● “Programming speed” - higher-order language, less CPU time, faster

coding

● “Program economy” - faster running programs, experience, lower-level

language

22

Productivity
● Main idea: programming speed (associated with a higher-order

language, faster coding, less CPU time) is a commonly mistaken

belief

● Using abstraction is the real path to success

● Can get abstraction through language, or other avenues - the ideal of

abstraction is the insight

● Abstraction can take years, but that is the true limitation to

productivity
23

Patterns & Anti-Patterns
● Patterns: reusable solutions to common software problems

● Structural

○ Adapter

● Creational

○ Named constructor, factory, abstract factory, singleton

● Behavioral

○ Iterator, observer, template

24

Patterns & Anti-Patterns
● Anti-pattern: an ineffective solution to a problem

● Psychology: Hick’s Law - increasing # of choices increases decision

time logarithmically

○ Application to menu and UI design

25

Fault Localization
● Fault Localization: identifying lines implicated in a bug. Humans are

better at localizing some types of bugs than others.

● Debugger: single-stepping through the program and inspecting

variable values.

● Automatic tools can help with the dynamic analyses of fault

localization and profiling

26

Debugger
● What is a debugger?

○ Can operate on source code or assembly code
○ Inspect the values of registers, memory
○ Key Features

■ Attach to process
■ Single-stepping
■ Breakpoints
■ Conditional Breakpoints
■ Watchpoints

27

Fault Localization Tools
● Spectrum-Based Fault Localization

○ Dynamic Analysis
○ Comparing statements covered on failing test cases to statements covered

on passing test cases
● Coverage-Based Fault Localization

28

Automatic Program Repair
● Anyone can submit a bug report in “bug bounty” programs at major

software companies

● More economical to pay strangers to submit defect reports

● Only 38% are true positives, but that’s still a lot of bugs

● We have more bugs than time to repair them

29

Automatic Program Repair
● Can use strategies and techniques learned in this class to find

evidence of and fix existing bugs

● Fault localization, mutation, testing to find/fix bugs

● A patch might contain extraneous edits (use delta debugging to

minimize)

● Each repair has to pass the whole test suite

● Can use static analysis to prevent testing “duplicates” aka equivalent

patches
30

Automatic Program Repair
● Ideally…

○ Mutation testing takes a program that passes all tests, and human

mistake-based mutants (that aren’t equivalent) must fail at least one test

○ Program repair takes a program that fails test suite, requires that one

mutant (based on human repairs from fault localization) only passes all

tests

31

32

Automatic Program Repair
● APR is good at fixing lots of bugs

○ Typically require small changes
○ Changes typically have to be AST modifications

● APR isn’t so good at other types of bugs (yet)
○ Particular values being off
○ Bugs that require human expertise

33

Profiling
● A profiler is a performance analysis tool that measures the frequency

and duration of function calls as a program runs.

● A flat profile computes the average call times for functions but does

not break times down based on context.

● A call-graph profile computes call times for functions and also the

call-chains involved

● E.x., event-based profiling, statistical profiling

34

Profiling
● Event-Based Profiling

○ Interpreted languages provide special hooks for profiling
■ Java: JVM-Profile Interface, JVM API
■ Python: sys.set_profile() module
■ Ruby: profile.rb, etc.

● Statistical Profiling
○ You can arrange for the operating system to send you a signal every X seconds
○ In the signal handler you determine the value of the target program counter
○ And append it to a growing list file, this is sampling
○ Later, you use debug information from the compiler to map the PC values to

procedure names
○ Sum up to get amount of time in each procedure

35

Please complete the course evaluation!

36

