VANDERBILT
School of Engincering

Final Exam Review
CS 4278/5278: Principles of Software Engineering

Zihan Fang
Graduate Teaching Assistant
Zihan Fang@vanderbilt.edu



HWG b

e Sunday April 21
e The grace period and late

policy do not apply

VANDERBILT
\'f School of Engineering

T Final Exam Review.
04/16/24

TR Final Exam (Exam?2).
04/18/24

04/21/24 (None; this is a sunday)



Exam 2

e Thursday April 18

e Class Time (75 min)
o 1:15 PM -2:30 PM
o FGH 134

e TA-Proctored

e Paper-based, written exam

3 VANDERBILT
\r School of Engineering

T Final Exam Review.
04/16/24

TR Final Exam (Exam?2).
04/18/24

04/21/24 (None; this is a sunday)



‘ VANDERBILT
\/ School of Engineering

Exam 2 T Final Exam Review.
e Thursday April 18 g
e Class Time (75 min) TR Final Exam (Exam2).
o 1:15 PM-2:30 PM Sl
o FGH 134 04/21/24 (None; this is a sunday)

e TA-Proctored

e Paper-based, written exam

NO ChatGPT
NO collaborations/communications (e.g. online chatting)



Exam Structure

e 100 points in total + 5 extra credits

5 multipart questions (10-20% are covered in Exam 1)
1T multipart bonus
Short answer, answer bank, fill in the blank

Open-book, open-notes, open-internet

\

VANDERBILT
School of Engincering



Exam Topics

e Delta Debugging

e Requirements and Specifications
e Maintainability and Productivity
e Fault Localization

e Automated Programming Repair

e Profiling

\

VANDERBILT
School of Engincering



~ VANDERBILT
. School of Engineering

Delta Debugging

e Delta debugging is an automated debugging approach that finds a

one-minimal interesting subset of a given set.

e Delta debugging is based on divide and conquer and relies on critical

assumptions (monotonicity, unambiguity, and consistency).

e It can be used to find which code changes cause a bug, to minimize

failure inducing inputs, and even to find harmful thread schedules.



\/ Gnpmmenr
Delta Debugging

Remember the three main assumptions around Delta Debugging...

e Monotonicity - if X is interesting, set of X & anything is interesting
e Unambiguity - if X & Y are interesting, intersection of X & Y is

interesting

e Consistency - X is either interesting or not interesting



VANDERBILT

Y 5 o . .
\/ School of Engincering
‘g@; 3 C

Delta Debugging

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

1 2 3 4 5 6 7 8 Interesting?

Example: Use DD to find the smallest
interesting subset of {1, ..., 8}



VANDERBILT
School of Engincering

Delta Debugging

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}
el 2 3 4 5 6 7 8 Interesting?

°l1 2 3 4
. 5 6 7 8

First Step:
Partition C = {1, ..., 8} into
P1={1, .., 4}and P2 = {5, ..., 8}

10



VANDERBILT
School of Engincering

Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 ???

. 5 6 7 8 7?7

Second Step:
Test P1 and P2

11



VANDERBILT
School of Engincering

Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2) ,



VANDERBILT
School of Engincering

Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

1 2 5 6 7 8

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

13



VANDERBILT
School of Engincering

Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

1 2 5 6 7 8 No

. 3 4 5 6 7 8 Yes

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)

14



Delta Debugging

VANDERBILT
School of Engincering

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

1 2 3 4 5 6 7 8 Interesting?
el 2 3 4 No

. 5 6 7 8 No

1 2 5 6 7 8 No

. 3 4 5 6 7 8 Yes

. 3 5 6 7 8 Yes

15



Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

D1 = {3}

Now find
D2!

of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?
el 2 3 4 No

. 5 6 7 8 No

el 2 5 6 7 8 No

. 4 5 6 7 8 Yes

. 5 6 7 8 Yes

1 2 4 5 6 Yes

VANDERBILT
School of Engincering

16



Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}
1 2 3 5 6 7 8 Interesting?
1 2 3 No
5 6 7 8 No
1 2 5 6 7 8 No
3 5 6 7 8 Yes
3 5 6 7 8 Yes
1 3 5 6 Yes
1 3 5 No
1 3 6 Yes

D1 = {3}
D2 = {6}

VANDERBILT
School of Engincering

17



V Xﬁl?o?o?l}:;r? gliI;Icring
Requirements

e Requirements say what the system will do, not how it will do it
e System requirements: relationships between monitored and
controlled variables
e Software requirements: relationship between inputs and outputs
e Produce formal software requirement models:
o Functional requirements

o Non-functional requirements (quality requirements)

18



~ VANDERBILT
. School of Engineering

Readability

Readability is a human judgment of how easy a text is to understand
e Avoid long lines

e Avoid having many different identifiers in the same region of code
e Do include comments

e Fully blank lines may matter more than indention

19



\i ;i{?l?o?g‘%r?giﬁg‘cring
Code Inspection and the Brain
e Comprehending code is where developers spend most time

e What makes code easy to read? Should we ask programmers?

e Self-reporting is unreliable

o High variability and low mean validity

20



: VANDERBILT
\/ School of Engineering

Code Inspection and the Brain

Summary of Techniques:

fMRI

fNIRS

Eye tracking
Smartwatch data
Surveys
Interviews

21



v VANDERBILT
School of Engincering
Productivity

e Experiment with system response time

o Short term mental memory buffer can be disrupted by increased system response
time

o Faster response time enabled significant performance enhancement

o Cost of upgrading a processor can be more than justified by savings in user time

e “Programming speed” - higher-order language, less CPU time, faster
coding
e “Program economy” - faster running programs, experience, lower-level

language

22



\ 'Y VANDERBILT
School of Engincering

Productivity

Main idea: programming speed (associated with a higher-order
language, faster coding, less CPU time) is a commonly mistaken
belief

Using abstraction is the real path to success

Can get abstraction through language, or other avenues - the ideal of
abstraction is the insight

Abstraction can take years, but that is the true limitation to

productivity

23



: VANDERBILT
‘ School of Engineering

Patterns & Anti-Patterns

e Patterns: reusable solutions to common software problems
e Structural

o Adapter
e Creational

o Named constructor, factory, abstract factory, singleton
e Behavioral

o Iterator, observer, template

24



VANDERBILT
. School of Engineering

Patterns & Anti-Patterns

e Anti-pattern: an ineffective solution to a problem
e Psychology: Hick's Law - increasing # of choices increases decision
time logarithmically

o Application to menu and Ul design

25



N/ Gopomour
Fault Localization

e Fault Localization: identifying lines implicated in a bug. Humans are
better at localizing some types of bugs than others.
e Debugger: single-stepping through the program and inspecting

variable values.

e Automatic tools can help with the dynamic analyses of fault

localization and profiling

26



~ VANDERBILT
. School of Engineering

Debugger

e Whatis a debugger?

o Can operate on source code or assembly code
o Inspect the values of registers, memory
o Key Features
m Attach to process
Single-stepping
Breakpoints
Conditional Breakpoints
Watchpoints

27



\ W VANDERBILT
School of Engincering

Fault Localization Tools

e Spectrum-Based Fault Localization
o Dynamic Analysis
o Comparing statements covered on failing test cases to statements covered
on passing test cases

e Coverage-Based Fault Localization

else
if (x>y)
m=y

else if (x>z)
m=Xx;
return m;

28



./ VANDERBILT
School of Engineering

Automatic Program Repair

Anyone can submit a bug report in “bug bounty” programs at major
software companies

More economical to pay strangers to submit defect reports

Only 38% are true positives, but that’s still a lot of bugs

We have more bugs than time to repair them

29



~ VANDERBILT
 School of Engincering

Automatic Program Repair

Can use strategies and techniques learned in this class to find
evidence of and fix existing bugs

Fault localization, mutation, testing to find/fix bugs

A patch might contain extraneous edits (use delta debugging to
minimize)

Each repair has to pass the whole test suite

Can use static analysis to prevent testing “duplicates” aka equivalent

patches

30



./ VANDERBILT
School of Engineering

Automatic Program Repair

o Ideally..
o Mutation testing takes a program that passes all tests, and human
mistake-based mutants (that aren't equivalent) must fail at least one test
o Program repair takes a program that fails test suite, requires that one
mutant (based on human repairs from fault localization) only passes all

tests

31



Ll ]

COMPILE AND TEST

(EVALUATE FITNESS)

>
DISCARS

£,

- }

Genirog

£
2 |

© ] &=
— V k " .C
i

ACCERT

A 4

° C‘

MUTATE

Ve

i

32



VANDERBILT
. School of Engineering

Automatic Program Repair

e APRs good at fixing lots of bugs

o Typically require small changes
o Changes typically have to be AST modifications

e APRisn’'t so good at other types of bugs (yet)

o Particular values being off
o Bugs that require human expertise

33



\ W VANDERBILT
School of Engincering

Profiling

e A profiler is a performance analysis tool that measures the frequency
and duration of function calls as a program runs.

e A flat profile computes the average call times for functions but does
not break times down based on context.

e A call-graph profile computes call times for functions and also the
call-chains involved

e E.x, event-based profiling, statistical profiling

34



. / VANDERBILT
' School of Engincering

Profiling

e Event-Based Profiling

o Interpreted languages provide special hooks for profiling

m Java: JVM-Profile Interface, JVM API
m Python: sys.set_profile() module
m Ruby: profile.rb, etc.

e Statistical Profiling

You can arrange for the operating system to send you a signal every X seconds
In the signal handler you determine the value of the target program counter
And append it to a growing list file, this is sampling

Later, you use debug information from the compiler to map the PC values to
procedure names

o Sum up to get amount of time in each procedure

O O O O

35



~ VANDERBILT
 School of Engincering

Please complete the course evaluation!

36



