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e Sunday April 21
e The grace period and late

policy do not apply
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04/16/24

TR Final Exam (Exam?2).
04/18/24

04/21/24 (None; this is a sunday)



Exam 2

e Thursday April 18

e Class Time (75 min)
o 1:15 PM -2:30 PM
o FGH 134

e TA-Proctored

e Paper-based, written exam
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Exam 2 T Final Exam Review.
e Thursday April 18 g
e Class Time (75 min) TR Final Exam (Exam2).
o 1:15 PM-2:30 PM Sl
o FGH 134 04/21/24 (None; this is a sunday)

e TA-Proctored

e Paper-based, written exam

NO ChatGPT
NO collaborations/communications (e.g. online chatting)



Exam Structure

e 100 points in total + 5 extra credits

5 multipart questions (10-20% are covered in Exam 1)
1T multipart bonus
Short answer, answer bank, fill in the blank

Open-book, open-notes, open-internet
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Exam Topics

e Delta Debugging

e Requirements and Specifications
e Maintainability and Productivity
e Fault Localization

e Automated Programming Repair

e Profiling
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Delta Debugging

e Delta debugging is an automated debugging approach that finds a

one-minimal interesting subset of a given set.

e Delta debugging is based on divide and conquer and relies on critical

assumptions (monotonicity, unambiguity, and consistency).

e It can be used to find which code changes cause a bug, to minimize

failure inducing inputs, and even to find harmful thread schedules.
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Delta Debugging

Remember the three main assumptions around Delta Debugging...

e Monotonicity - if X is interesting, set of X & anything is interesting
e Unambiguity - if X & Y are interesting, intersection of X & Y is

interesting

e Consistency - X is either interesting or not interesting
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}

1 2 3 4 5 6 7 8 Interesting?

Example: Use DD to find the smallest
interesting subset of {1, ..., 8}
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset
of {1, ..., 8}
el 2 3 4 5 6 7 8 Interesting?

°l1 2 3 4
. 5 6 7 8

First Step:
Partition C = {1, ..., 8} into
P1={1, .., 4}and P2 = {5, ..., 8}
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 ???

. 5 6 7 8 7?7

Second Step:
Test P1 and P2
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2) ,
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

1 2 5 6 7 8

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

*l 2 3 4 5 6 7 8 Interesting?
1 2 3 4 No

. 5 6 7 8 No

1 2 5 6 7 8 No

. 3 4 5 6 7 8 Yes

Interference! Sub-Step:
Find minimal subset D1 of P1
such that Interesting(D1 + P2)
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Delta Debugging
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Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}

1 2 3 4 5 6 7 8 Interesting?
el 2 3 4 No

. 5 6 7 8 No

1 2 5 6 7 8 No

. 3 4 5 6 7 8 Yes

. 3 5 6 7 8 Yes
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

D1 = {3}

Now find
D2!

of {1, ..., 8}

el 2 3 4 5 6 7 8 Interesting?
el 2 3 4 No

. 5 6 7 8 No

el 2 5 6 7 8 No

. 4 5 6 7 8 Yes

. 5 6 7 8 Yes

1 2 4 5 6 Yes
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Delta Debugging

Example: {3,6} Is Smallest Interesting Subset

of {1, ..., 8}
1 2 3 5 6 7 8 Interesting?
1 2 3 No
5 6 7 8 No
1 2 5 6 7 8 No
3 5 6 7 8 Yes
3 5 6 7 8 Yes
1 3 5 6 Yes
1 3 5 No
1 3 6 Yes

D1 = {3}
D2 = {6}

VANDERBILT
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Requirements

e Requirements say what the system will do, not how it will do it
e System requirements: relationships between monitored and
controlled variables
e Software requirements: relationship between inputs and outputs
e Produce formal software requirement models:
o Functional requirements

o Non-functional requirements (quality requirements)
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Readability

Readability is a human judgment of how easy a text is to understand
e Avoid long lines

e Avoid having many different identifiers in the same region of code
e Do include comments

e Fully blank lines may matter more than indention

19
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Code Inspection and the Brain
e Comprehending code is where developers spend most time

e What makes code easy to read? Should we ask programmers?

e Self-reporting is unreliable

o High variability and low mean validity

20
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Code Inspection and the Brain

Summary of Techniques:

fMRI

fNIRS

Eye tracking
Smartwatch data
Surveys
Interviews
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Productivity

e Experiment with system response time

o Short term mental memory buffer can be disrupted by increased system response
time

o Faster response time enabled significant performance enhancement

o Cost of upgrading a processor can be more than justified by savings in user time

e “Programming speed” - higher-order language, less CPU time, faster
coding
e “Program economy” - faster running programs, experience, lower-level

language
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Productivity

Main idea: programming speed (associated with a higher-order
language, faster coding, less CPU time) is a commonly mistaken
belief

Using abstraction is the real path to success

Can get abstraction through language, or other avenues - the ideal of
abstraction is the insight

Abstraction can take years, but that is the true limitation to

productivity
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Patterns & Anti-Patterns

e Patterns: reusable solutions to common software problems
e Structural

o Adapter
e Creational

o Named constructor, factory, abstract factory, singleton
e Behavioral

o Iterator, observer, template

24
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Patterns & Anti-Patterns

e Anti-pattern: an ineffective solution to a problem
e Psychology: Hick's Law - increasing # of choices increases decision
time logarithmically

o Application to menu and Ul design
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Fault Localization

e Fault Localization: identifying lines implicated in a bug. Humans are
better at localizing some types of bugs than others.
e Debugger: single-stepping through the program and inspecting

variable values.

e Automatic tools can help with the dynamic analyses of fault

localization and profiling
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Debugger

e Whatis a debugger?

o Can operate on source code or assembly code
o Inspect the values of registers, memory
o Key Features
m Attach to process
Single-stepping
Breakpoints
Conditional Breakpoints
Watchpoints
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Fault Localization Tools

e Spectrum-Based Fault Localization
o Dynamic Analysis
o Comparing statements covered on failing test cases to statements covered
on passing test cases

e Coverage-Based Fault Localization

else
if (x>y)
m=y

else if (x>z)
m=Xx;
return m;

28
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Automatic Program Repair

Anyone can submit a bug report in “bug bounty” programs at major
software companies

More economical to pay strangers to submit defect reports

Only 38% are true positives, but that’s still a lot of bugs

We have more bugs than time to repair them

29
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Automatic Program Repair

Can use strategies and techniques learned in this class to find
evidence of and fix existing bugs

Fault localization, mutation, testing to find/fix bugs

A patch might contain extraneous edits (use delta debugging to
minimize)

Each repair has to pass the whole test suite

Can use static analysis to prevent testing “duplicates” aka equivalent

patches
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Automatic Program Repair

o Ideally..
o Mutation testing takes a program that passes all tests, and human
mistake-based mutants (that aren't equivalent) must fail at least one test
o Program repair takes a program that fails test suite, requires that one
mutant (based on human repairs from fault localization) only passes all

tests
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Automatic Program Repair

e APRs good at fixing lots of bugs

o Typically require small changes
o Changes typically have to be AST modifications

e APRisn’'t so good at other types of bugs (yet)

o Particular values being off
o Bugs that require human expertise
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Profiling

e A profiler is a performance analysis tool that measures the frequency
and duration of function calls as a program runs.

e A flat profile computes the average call times for functions but does
not break times down based on context.

e A call-graph profile computes call times for functions and also the
call-chains involved

e E.x, event-based profiling, statistical profiling

34
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Profiling

e Event-Based Profiling

o Interpreted languages provide special hooks for profiling

m Java: JVM-Profile Interface, JVM API
m Python: sys.set_profile() module
m Ruby: profile.rb, etc.

e Statistical Profiling

You can arrange for the operating system to send you a signal every X seconds
In the signal handler you determine the value of the target program counter
And append it to a growing list file, this is sampling

Later, you use debug information from the compiler to map the PC values to
procedure names

o Sum up to get amount of time in each procedure

O O O O
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Please complete the course evaluation!
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