Exam 1 and HW3 Review

CS 4278/5278: Principles of Software Engineering

Skyler Grandel
Graduate Teaching Assistant
skyler.h.grandel@vanderbilt.edu

Exam 1

e Thursday Feb 23
e 12:01am —11:39 pm

e 2hours

o Latest start time: 9:59 pm

e TAs available9to9

e Practice Link on Piazza

CS4278/5278 Principles of Software Engineering Lectures

naay) HWZ dU¢

T
02/14/23 |

[qa]
TR Defect Reporting and
02/16/23 Triag
[bugs]

T Exam 1 (Midterm) Exam Example, Key for Exam Exampl

02/21/23 Review + HW3
Review.

TR Exam 1 (Midterm)
02/23/23

T Faultl
02/28/23 Profili
[bugs

Assignments ~

Exam Structure

e The exam will be a webpage on Dr. Huang’s website

e 6 multipart questions + 1 bonus

e Short answer, answer bank, fill in the blank

Exam 1 Material

e Process, Risk, Scheduling

e Measurement and Quality Assurance

e Testing and Code Review

e Dynamic, Static, and Dataflow Analysis

e Defect Reporting and Triage

Process, Risk, Scheduling

e Spiral, Agile, Waterfall - advantages and shortcomings

AGILE METHODOLOGY

Deploy

Process, Risk, Scheduling

e Zero-risk bias - prefer eliminating risk over larger reduction in risk
e Risk management as a project management tool

e Trade-offs and benefits of proper risk management

e Best practices for managing risk

e Balancing risk and innovation

Process, Risk, Scheduling

e Strategies to estimate time for a project (cocomo)
e Relationship between scheduling and risk
e Milestones vs. deliverables

o Endpoint of a task vs Results for the customer

e “Almost done” problem

Process, Risk, Scheduling

e Visualization - Gantt Diagram

477 1/7 1877 2577 1/8

8/8 15/8 22/8 29/8

5/9 1219 19/9

= [T 1
TI]
™
mMié |
W |
T3] I
Ms 4
T8
M3 ¢ | |
M2
e[11
TS

“inis!

Measurement and Quality Assurance

e Measurement - how is it applied to SE?
e \What decisions can be made based on metrics?
o Where should funds/effort be allocated?
e McNamara Fallacy
o Making decisions based solely on quantitative metrics
e Maintainability Index - general purpose
o Halstead Volume, Cyclomatic Complexity, LOC

Measurement and Quality Assurance

e Types of validity (construct, predictive, external)
e Streetlight effect
o Searching for something and looking only where it is easiest
e Statistics: false positive paradox, correlation != causation,
confounding variables

e Metric-based incentives

10

Measurement and Quality Assurance

e What is Quality Assurance?
e Halting Problem in QA

o \We can never be sure a program is correct
e Testing can give us an estimate

o Demonstrates the presence of bugs, not their absence

11

Testing and Code Review

e XUnit & unit testing frameworks
o Write tests that look like other code
e Another process in test-driven development
e Mocking and its applications (with APIs)
o Writing code to approximate unavailable objects

o Dynamic and static mocking

12

Testing and Code Review

e Types of testing

O

o O O O

Regression - running old tests

Unit - test individual pieces

Integration - end-to-end testing

Fuzz - testing lots of random inputs
Penetration - testing for security vulnerabilities

13

Testing and Code Review

e Bias in testing (test what works!)

e (Coverage as a metric for test suite comparison

e Coverage instrumentation and relation to observer effect
o Instrumenting a program could change its behavior

e Branch & line coverage
o Branch is more difficult but gives more confidence

o You should be able to calculate both

14

Testing and Code Review

Alpha Testing - by devs
Beta Testing - by external users
A/B testing - show impact of a difference in one feature

Sample common and harmful functionality with tests

15

Testing and Code Review

e Mutation testing - defect seeding to test quality of a test suite
o I.e: intentionally adding bugs
e Mutation operator and mutant orders
e Competent programmer hypothesis and relation to mutation
e Equivalent mutants
e Coupling effect
o simple faults are coupled with complex ones

16

Testing and Code Review

Test case: input data, oracle, comparator
Test case minimization
Coverage branch edges vs. paths

Enumerating paths and loops in a program

17

Testing and Code Review

e Test generation - DART approach
e |nvariants and oracle inference

o predicate over expressions that is true on all executions.
e Test generation tools

o Pex

o EvoSuite

18

Testing and Code Review

e Code review - find defects, improve quality
e Formal code inspection
o More formal and holistic

e Pull request - proposed changes to merge into a repository

19

Testing and Code Review

e Inspection incentive and root cause analysis
o Why inspect? To prevent problems from reoccurring
e Metrics on inspection (efficacy, speed, fatigue, etc.)
e Different types
o Formal inspection, walkthrough, pair programming,
passaround, ad hoc

20

Dynamic, Static, and Dataflow Analysis

e Dynamic analysis - analyzing a program by running it

e Assists with hard-to-test bugs

e Race condition - output depends on sequence of “uncontrollable”
events

e Steps
o Run program systematically (controlled input or environment)
o Monitor internal state at runtime

o Analyze results

21

Dynamic, Static, and Dataflow Analysis

e Edge and path coverage

e Taint tracking using sources and sinks

e Execution time profiling

e Focus on one property of output information for dynamic analysis

e Input dependent analysis

22

Dynamic, Static, and Dataflow Analysis

e Examples of dynamic analysis
o Eraser

Chaos Monkey

CHESS

Driver Verifier

Testing!

O O O O

Dynamic, Static, and Dataflow Analysis

e Static analysis - analysis of code not at runtime
e Dataflow analysis - approach to static analysis
e Main ideas
o Abstraction as hiding unnecessary details to simplify program

o Programs being simplified down to trees, graphs, or strings

24

Dynamic, Static, and Dataflow Analysis

e Abstract Syntax Tree represents syntactic structure of source code

Example: 5 + (2 + 3)

4

A 4

m/\
-+

N/\
w\!

Dynamic, Static, and Dataflow Analysis

e Dataflow analysis
o Gather information on the
possible set of values at
various points
o Definite null dereference
on CFG

ptr = new AVL();

if (B > 0)

Iptr = 0; l ’X = 2

print (ptr->data) ;

26

Dynamic, Static, and Dataflow Analysis

e Rice’s Theorem and Undecidability of Program’s Properties
o All of the interesting properties of a program are undecidable

o Conservative Program Analyses (imprecision)

27

Dynamic, Static, and Dataflow Analysis

e Rules for transfer functions: L, T, a X := 3
o Forward analysis |

e Live variables l
o Backward analysis X:= 4

o If the current value of a variable is
never used, the variable is considered

to be dead Yi=X

28

Defect Reporting and Triage

e Fault - exceptional situation at run time

e Defect - characteristic of a product which hinders its
usability for its intended purpose

e Bug report - Accurately and precisely describe the bug
and how to reproduce it

e Triage - measure of urgency

29

Homework 3 Intro
CS 4278/5278: Principles of Software Engineering

30

Starting Point

- Grading server uses Python 3.5.2
- Read documentation on the ast module and the astor module.

- You should submit a single file, “mutate.py”

- The program should generate mutants that are named “0.py”, “1.py”, ... (up to 100 files)
- Other outputs are ignored

- Can someone quickly explain what mutation testing is?
- hint: make sure to review mutation testing for the exam!

31

Mutation Operators

- You should implement and support the following three mutation activities:

1. Negate any single comparison operators (>= becomes <, = becomes !=)
2. Swap binary operators +, and -, as well as * and //.
3. Delete an assignment or function call statement.

32

Held-Out Test Suites

- Test Suites A, B, C, D, and E have 92%, 91%, 90%, 88%, and 79% statement
coverage of fuzzywuzzy, respectively. These suites have 80, 57, 47, 32, and 9
tests, respectively.

- Swap Binary Operators to distinguish Test Suite A and B from C, D, and E

- Swap Comparison Operators to distinguish between Suite B, C, D, and E

- Delete Assignments and Function Calls to distinguish C, D, and E. With
care, to distinguish between A and B.

- Higher-Order Mutation may distinguish Test Suites B, C, and D.

- Use Creativity to distinguish between Test Suite Aand B
hint: try changing assignments!

33

Starter Code

import ast
import astor
with open(“xxx.py”, “r") as src:
convert BinOp “+” to “-”
tree = ast.parse(src.read())
new_tree = AddTransformer().visit(tree0) // how to write a transformer?
file = astor.to_source(new _tree).strip()

then write to an output file

34

Starter Code

- How to write a Transformer?

- Read the ast.NodeVisitor and ast.NodeTransformer sections in ast documentation
- NodeTransformer is a subclass of NodeVisitor (recall ISD concepts...)
- Use inheritance to create different transformers:
- exX, class AddTransformer(ast.NodeTransformer)
- Transformer subclasses should have a visitor function (see documentation)
- https://docs.python.org/3/library/ast.html
- How do | parse a python file into an AST? How do | turn an AST into a source file?
- Read documentation on ast.parse, ast.dump, astor.to_source, etc.
- https://astor.readthedocs.io/en/latest/

- Is this the only approach?

- No, previous students have tried several other approaches that worked well!
- The transformer approach above is one that should be straightforward

35

https://docs.python.org/3/library/ast.html
https://astor.readthedocs.io/en/latest/

Common Pitfalls and Advices

1.

o &

Don’t start with higher order mutants!
a. Though carefully designed higher order mutants can be important, most higher order mutants
have a high chance of being detected by every test suite.

Increasing the odds of one mutation operator also effectively reduces the
odds of the others (since you can only produce a fixed number of mutants)
Be careful not to mistakenly share the tree data structure between mutants,
as you may end up with more edits than you thought

Try making a high-quality test suite locally and evaluating against it.

Make sure you actually have a chance of mutating every relevant node.

You may want to implement additional mutation operators.
a. See https://huang.isis.vanderbilt.edu/cs4278/readings/mutation-testing.pdf

After creating your mutants, you should run pylint to minimize the number of
linting/syntax errors reported

36

https://huang.isis.vanderbilt.edu/cs4278/readings/mutation-testing.pdf

Interested iIn AST?

Take Compilers (CS 3276/5276)!

