
Test Suite Quality Metrics

Review: Quality Assurance

• We use testing to help assure the quality of software we deliver
• Testing consists of running the subject program on a subset of

possible inputs, comparing results or behavior to a known output
• Your test suite represents the specification for the program
• Testing gives you confidence (not proof) that the program does some

good things and doesn’t do some bad things
• Testing is imperfect: proving programs are correct is undecidable

Review: Testing Concepts

• Regression testing helps detect regressions in software
• Fuzz testing helps automate the process of selecting inputs
• Penetration testing helps discover security vulnerabilities
• Unit tests evaluate individual components
• Integration tests evaluate the end-to-end system

• The divide between unit and integration testing is blurry
• Unit tests that depend on external components could be thought of as integrations
• Generally, Unit tests are for very specific behavior (other components are black-boxed)

• Mocking helps make testing cheaper

One-Slide Summary

•Test suite quality metrics help us decide which suite to use.
Line coverage, the fraction of lines visited when running a
suite, is simple but gives limited confidence. Branch
coverage, which requires both true and false values for
conditionals, is richer (incorporating data values indirectly).
Mutation analysis measures the fraction of seeded defects
detected by a suite; it is expensive but effective.

•Beta and A/B testing involve real users and their
experiences.

4

Testing

The Story So Far …

• Testing is the most common dynamic technique for software
quality assurance.

• Testing is very expensive (e.g., 35% of total IT spending).
[Capgemini World Quality Report. 2015]

• Not testing, or testing badly, is even more expensive
[Minimizing code defects to improve software quality and lower development costs. IBM 2008]

6

Guiding Narrative

•How should we think about testing?

•Lens of Logic

•Lens of Statistics

•Lens of Adversity

9

Lens of Logic

10

The Motivation

•If testing is our best way to gain confidence in the quality of
software, but testing is expensive, how can we ensure that
we are testing in an effective manner?

•Informally Want: The program passes the tests if and only if
it does all the right things and none of the wrong things.
• Pass all tests → program adheres to requirements
• Each failing test → program behaves incorrectly

11

Intuition

•Suppose you were writing a sqrt program and one of the
requirements was that it should abort gracefully on
negative inputs.

•Suppose further that your test suite does not include any
negative inputs.

•Can we conclude that passing all of the tests implies
adhering to all of the requirements?

12

Coverage

•We desire all of the requirements to be covered (“checked”)
by the test suite.

•For our purposes, X coverage is the degree to which X is
executed/exercised by the test suite.

•Examples:
• Statement coverage is the fraction of source statements that are

executed by the test suite.

13

14

Do Tests Cover All Requirements?

•Want: traceability between requirements and test cases

•Each test case annotated like:
• “a program that passes this test satisfies requirement X” or
• “passing this test gives confidence that a program adheres to

requirement Y”

•Outside of certain industries (e.g., Aerospace), such formal
traceability is rare

15

An Approximation

•We will cover requirements elicitation later in this course

•Assume: no formal traceability

•So testing that the program does all and only the good
things that it is required to do is not possible

• (or not feasible)

16

Don't Do Bad Things

•We can at least test that the program does not do certain
bad things
• e.g., “don't segfault”,
• “don't send my password to Microsoft”,
• “on this one particular input, don't get the wrong answer”

•Note that “I never do bad things” is not the same as “I
always/eventually do good things”
• For more information, take a class on Modal Logic or read about

Liveness vs. Safety properties

17

Testing to Find Bugs

•So now we want to test to gain confidence that the program does
not do “bad things”

•That is, that the program does not have bugs

•Key Logical Observation: If we never test line X then testing
cannot rule out the presence of a bug on line X

• (You could read line X, but we're talking about testing. Later this
semester: code review.)

18

If this seems “too obvious” so far, just wait …

19

P → Q

• “No test covers X → may have a bug in X”

21

P → Q

• “No test covers X → may have a bug in X”

22

No test covers X May have a bug in X
T T
F T

“All Other Things Being Equal”

•If test A visits lines 1 and 2
•And test B visits lines 1, 2, 3 and 4
•Then, all other things being equal, we prefer test B

• Test A gives some confidence about 1 and 2 and no confidence (no
information) about 3 and 4

• Test B gives some confidence about 1, 2, 3 and 4

•If the confidence/info gained per tested line is c>0, test A
gives us 2c+0 and test B gives us 4c.
• Because c>0, we have 4c > 2c. So B > A.

23

How Does this Square with Unit Testing?

•Earlier we discussed that ideally unit tests cover only one
specific functionality

•What if 1 and 2 have different functionality from 3 and 4?

•Ideally:
• A covers 1,2; B covers 3,4
• A + B > A
• Here, “All other things being equal” must hold true (A ∈ {A,B})

24

Simplifying Assumptions

•Assumption 1. We gain the same amount of confidence (or
information) for each visited line.

•Assumption 2. The amount of confidence (or information)
we gain per visited line is positive.

25

Line Coverage: A Test Suite Quality Metric

•A test suite quality metric allows test suites to be compared.

•Line (or statement) coverage is a test suite quality metric: it
is the number of unique lines (statements) visited (exercised)
by the program when running the test suite.
• (Informally: visiting more lines is better because you gain confidence

about visited lines.)

26

Using Line Coverage

•Given two test suites that both run within your resource budget
(“AOTBE”, etc.), if we can only run one, we prefer the test suite
with higher line coverage

•Thus coverage is a metric that allows us to compare two test
suites and pick the “better” one

•We use this information to guide decision-making in a software
process (“how should we do testing?”)

27

Collecting Line Coverage

•At its simplest, this is just print-statement debugging

•Put a print statement before every line of the program
• Run all the tests, collect all the printed information, remove

duplicates, count

•Practical concern: the observer effect (from physics) is the
fact that simply observing a situation or phenomenon
necessarily changes that phenomenon.

28

Coverage Instrumentation

•Coverage instrumentation modifies a program to record
coverage information in a way that minimizes the observer
effect.
• This can be done at the source or binary level.

•Don't actually print to stdout/stderr
•Don't slow things down too much

• Pre-check before printing a duplicate?

•Don't introduce infinite loops
• Instrument “print” with a call to “print”?

29

Good News: “Solved” Problem

•This is a well-studied problem and many push-button
solutions exist for various forms of coverage
• Either built in to your IDE or as external tools

•You will use three in the Homework
• Python's coverage, gcc's gcov, Java's cobertura

•For more information on how to write one yourself, take a
(graduate?) PL or Compilers class.

30

Problems with Line Coverage

•What could go wrong with line coverage?

•Can you think of situations with 100% line coverage where
the program might still have bugs?

31

Example: Statement Coverage Inadequacy

•Cross-site scripting (XSS) attacks:
[2016 Vulnerability Statistics Report, edgescan]

32

Example: Statement Coverage Inadequacy

•Cross-site scripting attacks:
[2016 Vulnerability Statistics Report, edgescan]

33

Data Values and Implicit Control Flow

• return a/b

• print ptr->fld

34

if (b != 0)
 return a/b;
else
 ABORT
if (ptr != NULL)
 print ptr->fld
else
 ABORT

Intuition

•Many interesting data values cause implicit or explicit
changes of control
• That is, they cause different branches of conditionals to execute

•Informally, the problem of ensuring that we cover
interesting data values may reduce to the problem of
ensuring that we cover all branches of conditionals

35

Branch Coverage

•Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that
test suite (i.e., if→true and if→false are counted separately)

•Note that branch coverage can subsume line coverage:
foo(a):
 if a > 5:
 print “x”
 print “y”

36

What is the line coverage of foo(7)?

How about branch coverage?

Branch Coverage

•Branch coverage is a test suite quality metric that counts
the total number of conditional branches exercised by that
test suite (i.e., if→true and if→false are counted separately)

•Note that branch coverage can subsume line coverage:
foo(a):
 if a > 5:
 print “x”
 print “y”

37

Test Suite {foo(7)} has 100%
line coverage but 50% branch
coverage.

Test Suite {foo(7), foo(0)}
has 100% line and 100%
branch coverage.

Branch vs. Line

•Branch coverage typically gives us more confidence than
line coverage

•Typically, 100% branch coverage implies 100% line coverage

•However, branch coverage is “more expensive” in the sense
that it is harder for a test suite to have high branch coverage
than to have high line coverage
• Note: quality isn't really “more expensive”, it’s more that line

coverage alone isn’t enough. Quality is hard to achieve.

38

Other Flavors

•Function Coverage: what fraction of functions have been
called?

•Condition Coverage: what fraction of boolean
subexpressions have been evaluated?
• Comparing this to branch coverage is a not-uncommon test question

…

•Modified Condition Coverage (MC/DC): branch coverage +
independent condition influence (this is a simplification)
• Used in mission critical (e.g., avionics) software

39

Trivia: Statistics

•This English social reformer and statistician (among other
activities, ~1850) was a pioneer in the use of infographics:
the effective graphical presentation of statistical data.

40

Trivia: Statistics

•This English social reformer and statistician (among other
activities, ~1850) was a pioneer in the use of infographics:
the effective graphical presentation of statistical data.

41

Psychology: Recall

•120 students (age 18 to 24) were asked to study prose passages
(e.g., 300 words on “Sea Otters”) and also do math problems

•Group 1: Read for 7m, math for 2m, re-read for 7m, math for 5m

•Group 2: Read for 7m, math for 2m, test for 10m, math for 5m

•Both groups: later → test for 10 minutes
• Which group did better? By how much?

42

Psychology: Recall

43

Psychology: Testing Effect

•The testing effect: long-term memory is increased when
some of the learning period is devoted to retrieving the to-
be-remembered information through testing with feedback.

•“They found that re-studying or re-reading memorized
information had no effect, but trying to recall the
information had an effect.”

•Implication for SE: Code comprehension.
• [Roediger, H. L.; Karpicke, J. D. (2006). "Test-Enhanced Learning: Taking Memory Tests

Improves Long-Term Retention". Psychological Science. 17 (3): 249–255.]

44

Lens of Statistics

45

Alternate View

•The bugs experienced by users are the ones that matter.

•Dually, bugs never experienced by users do not matter.

46

Positive User View
•Suppose you are writing a cashier application that makes

change for a dollar. Given $ between 1 and 100 cents,
return the coins to give out as change.
• e.g., 23 → return 3 quarters and 2 pennies

•In this scenario, you can exhaustively test all 100 inputs
that will occur to users in the real world
• Does it matter if that is 100% coverage
• (e.g., dead code)

47

Negative User View

•Suppose users will only ever cause lines 1, 2 and 3 of your
program to be executed

•Then you do not need to test line 4
• Even if it has a bug, users will never encounter that bug

•Note “will” → this either requires either clairvoyance or a
finite input domain

48

Testing as Sampling

•If user-experienced bugs are the ones that matter, testing
should be devoted to sampling those inputs that users will
provide

•Two views:
• Sample what users do most commonly
• Sample what causes the most harm if users do it

•Compare:
• Risk = (Prob. of Event) * (Damage if Event Occurs)

49

Sampling Error

•In statistics, sampling error is incurred when the statistical
characteristics of a population are estimated from a subset,
or sample, of that population.
• “Our test suite is a sample of inputs that could occur in the real

world. Our program behaves well on our test suite.”
→ later →
“Our program behaves badly on some other untested real input.
Sampling error!”

•Testing gives confidence the same way sampling (or polling)
gives confidence.

50

Sampling Bias

•In statistics, sampling bias is a bias in which a sample is
collected in such a way that some members of the intended
population are less likely to be included than others.
• Suppose you are conducting a poll to see who will win the next

election, but you only poll republicans.

• Suppose you are creating tests to see if your
program will crash,
but you only poll nice, small, inputs.

51

Solution?

•There are a number of well-established sampling
techniques in the field of statistics to help address such
biases
• They often require knowing something about the distribution of the

full population from which you want to sample a subpopulation

•The basic problem in SE is that the underlying distribution
of real user inputs is not known

52

Beta Testing

•Alpha testing is testing done by
developers.

•Beta testing is testing done by
external users
(often using a special beta version of
the program).

• See also “Early Access”

•Beta testing can be viewed as directly
sampling the space of user inputs

53

A/B Testing

•A/B testing involves two variants of your software, A and B,
which differ only in one feature. Different users are shown
different variants and responses are recorded. It is an
instance of two-sample statistical hypothesis testing.

54

Likely or Damaging?

•Recall two guiding approaches:
• Sample what users will do most commonly
• Sample what will cause the most harm

•The former is sometimes called workload generation
• Common for databases, webservers, etc.

•The latter often relates to computer security
• Exploit generation, penetration testing, etc.

55

Likely or Damaging?

•Recall two guiding approaches:
• Sample what users will do most commonly
• Sample what will cause the most harm

•The former is sometimes called workload generation
• Common for databases, webservers, etc.

•The latter often relates to computer security
• Exploit generation, penetration testing, etc.

56

Non-Security Damage

•For Amazon (etc.), “damaging” is “customer does not
complete the purchase”

57

[Dobolyi et al. Modeling Consumer-Perceived
Web Application Fault Severities for Testing.
ISSTA 2010.]

Lens of Adversity

58

Finding Bugs

•Suppose you want to decide between
two metal detectors

•You might bury some metal pieces in
your yard
• The metal detector that finds more of the

pieces is expected to be better at finding
metal in the wild

•Suppose you wanted to evaluate the
quality of two bug-finding test suites …

59

Mutation Testing

•Mutation testing (or mutation analysis) is a
test suite adequacy metric in which the quality
of a test suite is related to the number of
intentionally-added defects it finds.

•Informally: “You claim your test suite is really
great at finding security bugs? Well, I'll just
intentionally add a bug to my source code and
see if your test suite finds it!”

60

Verisimilitude

•In the metal detector example, if every piece of metal I bury
is next to an underground pipe, the metal detector that
finds them all may not actually do well in the real world
• The metal placement I decided on was not indicative of metal in the

real world

•Similarly, if I add a bunch of defects to my software that are
not at all the sort of defects real humans would make, then
mutation testing is uninformative

61

Defect Seeding

•Defect seeding is the process of intentionally
introducing a defect into a program. The
defect introduced is similar to defects
introduced by real developers. The seeding is
typically done by changing the source code.

•For mutation testing, defect seeding is
typically done automatically (given a model
of what human bugs look like)
• You will do this in Homework 3

62

Mutation Operators

•A mutation operator systematically changes a program point. In
mutation testing, the mutation operators are modeled on
historical human defects. Examples:

•if (a < b) → if (a <= b)
•if (a == b) → if (a != b)
•a = b + c → a = b – c
•f(); g(); → g(); f();
•x = y; → x = z;

63

Mutant
•A mutant (or variant) is a version of the original program

produced by applying one or more mutation operators to one or
more program locations. The order of a mutant is the number of
mutation operations applied. Note: NOT the number of
operators applied.

// original // 2nd-order mutant
if (a < b): if (a <= b):
 x = a + b → x = a – b
 print(x) print(x)

64

Competent Programmers

•The competent programmer hypothesis holds that program
faults are syntactically small and can be corrected with a
few keystrokes.

•Programmers write programs that are largely correct. Thus
the mutants simulate the likely effect of real faults.
Therefore, if the test suite is good at catching the artificial
mutants, it will also be good at catching the unknown but
real faults in the program.

65

Do Humans Really Make Simple Mistakes?

66

Competent?

•Is the competent programmer hypothesis true?

67

Competent?

•Is the competent programmer hypothesis true?

•Yes and no.

•It is certainly true that humans often make simple typos
(e.g., + to -).

•But it is also true that some bugs are more complex than
that.

68

Coupling Effect

•The coupling effect hypothesis holds that complex faults
are “coupled” to simple faults in such a way that a test suite
that detects all simple faults in a program will detect a high
percentage of the complex faults.

•Is it true?
• Tests that detect simple mutants were also able to detect over 99%

of second- and third-order mutants historically
[A. J. Offutt. Investigations of the software testing coupling effect. ACM Trans. Softw. Eng. Methodol.,
1(1):5–20, Jan. 1992.]

69

Mutation Testing

•A test suite is said to kill (or detect, or reveal) a mutant if
the mutant fails a test that the original passes.

•Mutation testing (or mutation analysis) of a test suite
proceeds by making a number of mutants and measuring
the fraction of them killed by that test suite. This fraction is
called the mutation adequacy score (or mutation score).
• A test suite with a higher score is better.

70

Mutation Testing

71

Compare the
outputs: if outputs
are different -> the

mutant is killed

Mutation Testing

• Mutation score =

number of mutants killed / total number
of mutants * 100

72

Compare the
outputs: if outputs
are different -> the
mutant is killed by

the test suite

Mutation Testing

73

• Stillborn mutants
• Syntactically incorrect, killed by compiler: e.g.,

x=a++b
• Trivial mutants

• Killed by almost any test case
• Equivalent mutants  HARD

• Always acts in the same behavior as the original
program: e.g., x=a+b and x=a-(-b)

•None of the above is interesting.
•We care about mutants that behave differently but we
don’t have test cases to identify them yet

Compare the
outputs: if outputs
are different -> the
mutant is killed by

the test suite

Equivalent Mutant Problem

•Suppose you have “x = a + b; y = c + d;” and you swap those
two statements.

•The resulting program is a mutant, but it is semantically
equivalent to the original.
• So it will pass and fail all of the tests that the original passes and fails.

•So it will dilute the mutation score

•Detecting equivalent mutants is a big deal. How hard is it?

75

Equivalent Mutant Problem

•Detecting equivalent mutants is a big deal. How hard is it?

•It is undecidable!
• By direct reduction from the halting problem (or by Rice's Theorem)

foo: # foo halts if and only if

 if p1() == p2(): # p1 is equivalent to p2

 return 0

 foo()

76

Mutation Analysis: Pros and Cons

•Has the potential to subsume other test suite adequacy criteria
• Read: it can be very good

•Which mutation operators do you use?

•Where do you apply them? How often do you apply them?
• Typically done at random, but how?

• It is very expensive. If you make 1,000 mutants, you must now
run your test suite 1,000 times!
• We started by saying testing (1x) was expensive!

77

Questions?

•Lens of Logic: “no visit X → no find bug in X”
• Leads to statement and branch coverage.

•Lens of Statistics: “sample the inputs the users will make”
• Leads to beta testing, A/B testing.

•Lens of Adversity: “poke realistic holes in the program and
see if you find them”
• Leads to mutation testing.

78

	Slide Number 1
	Review: Quality Assurance
	Review: Testing Concepts
	One-Slide Summary
	Slide Number 5
	The Story So Far …
	Guiding Narrative
	Lens of Logic
	The Motivation
	Intuition
	Coverage
	Slide Number 14
	Do Tests Cover All Requirements?
	An Approximation	
	Don't Do Bad Things
	Testing to Find Bugs	
	If this seems “too obvious” so far, just wait …
	P → Q
	P → Q
	“All Other Things Being Equal”
	How Does this Square with Unit Testing?
	Simplifying Assumptions
	Line Coverage: A Test Suite Quality Metric
	Using Line Coverage
	Collecting Line Coverage
	Coverage Instrumentation
	Good News: “Solved” Problem
	Problems with Line Coverage
	Example: Statement Coverage Inadequacy
	Example: Statement Coverage Inadequacy
	Data Values and Implicit Control Flow
	Intuition
	Branch Coverage
	Branch Coverage
	Branch vs. Line
	Other Flavors
	Trivia: Statistics
	Trivia: Statistics
	Psychology: Recall
	Psychology: Recall
	Psychology: Testing Effect
	Lens of Statistics
	Alternate View
	Positive User View
	Negative User View
	Testing as Sampling
	Sampling Error
	Sampling Bias
	Solution?
	Beta Testing
	A/B Testing
	Likely or Damaging?
	Likely or Damaging?
	Non-Security Damage
	Lens of Adversity
	Finding Bugs
	Mutation Testing
	Verisimilitude
	Defect Seeding
	Mutation Operators
	Mutant
	Competent Programmers
	Do Humans Really Make Simple Mistakes?
	Competent?
	Competent?
	Coupling Effect
	Mutation Testing
	Mutation Testing
	Mutation Testing
	Mutation Testing
	Equivalent Mutant Problem
	Equivalent Mutant Problem
	Mutation Analysis: Pros and Cons
	Questions?

