
Measurement

One-Slide Summary

● Software metrics are widely used in industry to support decision-
making. Metrics are often inadequately supported and thus lack
validity. They should be used carefully.

● Measurement is a fundamental activity but is influenced by human
biases. It is easy to misinterpret data or focus on what is easy to
measure. Metrics can incentivize perverse behavior.

● Managers are more concerned with real-world s/w use metrics than
individual productivity.

4

Story So Far

● Using a software process correctly could improve efficiency. We need
information to do so (e.g., to identify risk) but may lack it because of
uncertainty.

● If only we could measure
things to gain information
about them …

5

Who Cares About Process Again?

6

Reminder: “cybercriminals accessed approximately 145.5 million U.S. Equifax consumers'
personal data, including their full names, Social Security numbers, birth dates, addresses,
and, in some cases, driver license numbers.”
US-CERT: US Computer Emergency Readiness Team, responsible for analyzing and reducing cyberthreats, etc.

Consider Time Ranges: A vs. B+C

7

Reminder: “cybercriminals accessed approximately 145.5 million U.S. Equifax consumers'
personal data, including their full names, Social Security numbers, birth dates, addresses,
and, in some cases, driver license numbers.”

“A” “B” “C”

Who Cares About Process Again?

8

Reminder: “cybercriminals accessed approximately 145.5 million U.S. Equifax consumers'
personal data, including their full names, Social Security numbers, birth dates, addresses,
and, in some cases, driver license numbers.”

“A” “B” “C”

Outline

• Case Study – Maintainability Index
• LOC, Halstead Volume, Cyclomatic Complexity

• Measurement
• Difficulty, Validity
• Correlation, Confounds
• Streetlight Effect, McNamara Fallacy
• Incentives and Warnings
• *(reading) Begel and Zimmermann Survey

9

Maintainability Index

• In Visual Studio since 2007

“Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability. Color
coded ratings can be used to quickly identify trouble spots in your code. A green rating is
between 20 and 100 and indicates that the code has good maintainability. A yellow rating is
between 10 and 19 and indicates that the code is moderately maintainable. A red rating is a
rating between 0 and 9 and indicates low maintainability.”

10

Maintainability Index in a Nutshell

• Index between 0 and 100 representing the relative ease of maintaining the code.
• Higher is better. Color coded by number:

• Green: between 20 and 100
• Yellow: between 10 and 19
• Red: between 0 and 9

11

Design Rationale

● "We noticed that as code tended toward 0 it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."

● "The desire was that if the index showed red then we would be saying
with a high degree of confidence that there was an issue with the
code."

 [https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/]

12

https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/
https://blogs.msdn.microsoft.com/codeanalysis/2007/11/20/maintainability-index-range-and-meaning/

The Magic Formula

Maintainability Index =

 max(0, (171 –

 5.2 * log(Halstead Volume) –

 0.23 * (Cyclomatic Complexity) –

 16.2 * log(Lines of Code)

)* 100 / 171)

13

The Magic Formula

• Maintainability Index =

• max(0, (171 –

• 5.2 * log(Halstead Volume) –

• 0.23 * (Cyclomatic Complexity) –

• 16.2 * log(Lines of Code)

•)* 100 / 171)

14

Lines of Code

Superficially easy to measure
 wc -l file1 file2

15

LOC projects
450 Expression Evaluator

2.000 Sudoku, Functional Graph Library
40,000 OpenVPN

80-100,000 Berkeley DB, SQLlight
150-300,000 Apache, HyperSQL, Busybox, Emacs, Vim, ArgoUML
500-800,000 gimp, glibc, mplayer, php, SVN

1,600,000 gcc
6,000,000 Linux, FreeBSD

45,000,000 Windows XP

Lines of Code: Normalized

• Common Practices:
• Ignore comments and empty lines

• Ignore lines with fewer than 2 characters

• Pretty Print source code first

16

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
 i = 0;
 i < 100;
 i += 1
) {
 printf("hello");
}

Languages: Normalized

● “Programmers working with high-level languages achieve better
productivity and quality than those working with lower-level
languages. Languages such as C++, Java, Smalltalk, and Visual Basic
have been credited with improving productivity, reliability, and
comprehensibility by factors of 5 to 15 over low-level languages such
as assembly and C (Brooks 1987, Jones 1998, Boehm 2000).”

● [Steve McConnel. Code Complete: A Practical Handbook of Software Construction, Second Edition.
Microsoft.]

17

Languages: Normalized

• “… typical ratios of source statements in several high-level languages to the equivalent
code in C. A higher ratio means that each line of code in the language listed accomplishes
more than does each line of code in C.”

• C 1.0

• Fortran 2.0

• C++ 2.5

• Java 2.5

• Visual Basic 4.5

• Perl 6.0

• Python 6.0

• Smalltalk 6.0

18

Halstead Volume

• Introduced by Maurice Halstead in 1977
• “Halstead made the observation that metrics of the software

should reflect the implementation or expression of algorithms in
different languages, but be independent of their execution on a
specific platform.”

• Halstead Volume =
number of operators / operands *
log2(number of distinct operators / operands)

• Approximates the size of elements and vocabulary

19

Halstead Example

main() {
 int a, b, c, avg;
 scanf("%d %d %d", &a, &b, &c);
 avg = (a + b + c) / 3;
 printf("avg = %d", avg); }
• The 12 unique operators (of 27) are:

 main, (), {}, int, scanf, &, =, +, /, printf, , , ;
• The 7 unique operands (of 17) are:

a, b, c, avg, "%d %d %d", 3, "avg = %d"

20

Cyclomatic Complexity

• Proposed by McCabe in 1976
• Based on control flow graphs (CFG), it measures

linearly independent paths through a program
• ~ “number of decisions”

• ~ “tests to cover all branches”
(For more info: take a Compilers or PL class.)

21

if (c1) {
 f1();
 } else {
 f2();
 }
if (c2) {
 f3();
 } else {
 f4();
 }

Cyclomatic Complexity
• Based on control flow graphs, it measures

linearly independent paths through a program
• ~ “number of decisions”
• ~ “tests to cover all branches”

(For more info: take a Compilers or PL class.)
Linearly independent path:
Any path through the program that introduces at least one
new edge that is not included in any other linearly
independent paths

22

if (c1) {
 f1();
 } else {
 f2();
 }
if (c2) {
 f3();
 } else {
 f4();
 }

Cyclomatic Complexity: M = E – N + 2*P
E: # of edges N: # of nodes P: # of connected components
Connected component: a connected subgraph that is not part of any larger
connected subgraph

Maintainability Index: Origins

• Developers rated a number of HP systems
• Statistical regression analysis to find key factors among 40 candidate

metrics

23

[Oman and Hagemeister. Metrics for Assessing a Software System's
Maintainability. ICSM 1992.]

Case Study Thoughts

• Metrics seem attractive, can be easy to compute, and seem to match
our intuition

• Parameters can be arbitrary: calibrated from small study, few devs,
unclear significance

• Ex: original 1992 C/Pascal programs may be quite different from
modern Java/JS/C# code

• Many of these metrics strongly correlate with size: just measure lines
of code?

[cf. https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/]

25

https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/

Measurement for
Decision Making in Software
• Measurement is the empirical, objective assignment of numbers,

according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them. [Craner, Bond, “Software
Engineering Metrics: What Do They Measure and How Do We Know?”]

• A quantitatively expressed reduction of uncertainty based on one or
more observations. [Hubbard, “How to Measure Anything …”]

26

Software Quality Metric

• IEEE 1061 says:
• “A software quality metric is a function whose inputs

are software data and whose output is a single
numerical value that can be interpreted as the degree
to which [the] software possesses a given attribute
that affects its quality.”

27

Measurement for Decision Making

• Fund project?
• More testing?
• Fast enough? Secure enough?

• (“Should Equifax apply this webserver patch?”)
• Code quality sufficient?
• Which feature to focus on?
• Developer bonus?
• Time and cost estimation? Predictions reliable?

28

Software Qualities

● Scalability
● Security
● Extensibility
● Documentation
● Performance
● Consistency
● Portability

29

● Installability
● Maintainability
● Functionality (e.g., data

integrity)
● Availability
● Ease of use
● Privacy
● Energy Efficiency

Process Qualities

● On-time release
● Development speed
● Meeting efficiency
● Conformance to processes
● Time spent on rework
● Reliability of predictions
● Fairness in decision making

30

● Measure time, costs,
actions, resources, and
quality of work
packages; compare with
predictions

● Use information from
issue trackers,
communication
networks, team
structures, etc.

● …

Positive Example: Benchmark-Based Metrics

31

Measurement is Difficult

32

Trivia: Computer Science

• This American Turing-award winner is known both for
Byzantine fault tolerance (distributed computing) and
also object-oriented type systems (programming
languages). The eponymous substitution principle
states that an object of a subclass can be used
whenever an object of a superclass is expected.

33

Trivia: Computer Science

• This American Turing-award winner is known both for
Byzantine fault tolerance (distributed computing) and
also object-oriented type systems (programming
languages). The eponymous substitution principle
states that an object of a subclass can be used
whenever an object of a superclass is expected.

34

Barbara Liskov

Psychology: “Perception”

You are participating in a perception study with other
students. One by one you each say aloud which line in
the second card is most like the line in the first card:

35

Psychology: “Perception”

• When you are alone, your accuracy is 100%
• When 7 of the 8 people ahead of you give the wrong answer, your

accuracy drops to 63.2%
• Overall, 75% of participants gave an [obviously!] incorrect answer

at least one time out of twelve
• Most “yielders”: “I suspected about the middle – but tried to put it

out of my mind”
• 12/50 had “distortion of perception”: expressed belief that the given

answer was correct; were unaware that all were wrong

36

Psychology: Social Influence

• This study is Asch's Conformity Experiment
• Individual differences were large, independence was frequent (e.g.,

95% of subjects defied the majority at least once)
• Still, 75% yielded to a falsehood at least once

• Implications for SE: What if you and your boss disagree on a
measurement “before your eyes”? Also: dangers of groupthink.

[Asch, S.E. (1951). Effects of group pressure on the modification and distortion of
judgments. In H. Guetzkow (Ed.), Groups, leadership and men (pp. 177–190).]

37

Validity

• Construct Validity: Are we measuring what we intended to measure?
• Predictive Validity: The extent to which the measurement can be

used to explain some other characteristic of the entity being
measured

• External Validity: Concerns the generalization of the findings to
contexts and environments, other than the one studied

38

Everything is Measurable

• If X is something we care about, then X, by definition, must be detectable
• How could we care about things like “quality,” “risk,” “security,” or “public image” if these things

were totally undetectable, directly or indirectly?
• If we have reason to care about some unknown quantity, it is because we think it corresponds to

desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount
• If you can observe a thing at all, you can observe more of it or less of it
• If we can observe it in some amount, then it must be measurable.

39

40

Streetlight Effect

• The streetlight effect is a type of observational bias that occurs when
people are searching for something and look only where it is easiest

• Despite this, don't lose faith in measurement: just work to avoid the
bias

41

Dangers When Using Metrics

• Bad statistics: A basic misunderstanding of measurement theory and
what is being measured.

• Bad decisions: The incorrect use of measurement data, leading to
unintended side effects.

• Bad incentives: Disregard for the human factors, or how the cultural
change of taking measurements will affect people.

42

Lies, damned lies, and …

• A case study for your consideration:
• In 1995, the UK Committee on Safety of Medicines issued the

following warning: "third-generation oral contraceptive pills increased
the risk of potentially life-threatening blood clots in the legs or lungs
twofold -- that is, by 100 percent”

43

… statistics

• “…of every 7,000 women who took the earlier, second-generation oral
contraceptive pills, about one had a thrombosis; this number
increased to two among women who took third-generation pills…”

• “…The absolute risk increase was only one in 7,000, whereas the
relative increase (among women who developed blood clots) was
indeed 100 percent.”

44

False Positive Paradox

• The false positive paradox is a statistical result where false positive
tests are more probable than true positive tests, occurring when the
overall population has a low incidence of a condition and the
incidence rate is lower than the false positive rate.

45

• The probability of actually being
infected after one is told that one is
infected is only 29% (20/20 + 49) for
a test that otherwise appears to be
"95% accurate":

Understanding Data

46

Measurement Scales

• Scale: the type of data being measured
• The scale dictates which analyses are legitimate or meaningful
• Common options:

• Nominal: categories

• Ordinal: order, but no magnitude (e.g., ranks)

• Interval: order, magnitude, but no true zero (e.g., temperature)

• Ratio: Order, magnitude, and true zero (e.g., height)

47

To Argue Causation

• Provide a theory (from domain knowledge, independent of data)
• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

48

49

50

51

Confounding Variables

If we examine coffee consumption → cancer

52

Coffee consumption Cancer

Confounding Variables

If we examine coffee consumption → cancer, we end up with
misleading results
Smoking is a confounding variable

53

Coffee consumption

Smoking

Cancer

Associations

Causal relationship

Confounds in Software Analysis

• Earlier we considered that some metrics (e.g., Halstead, Cyclomatic)
might be just “size” cleverly disguised

• In a study of twenty-four commonly-used object-oriented metrics,
only four were actually useful in predicting the quality of a software
module when the effect of the module size was accounted for

[El Emam et al. The Confounding Effect of Class Size on the Validity of Object-Oriented
Metrics. IEEE Transactions on Software Engineering 2001.]

54

McNamara Fallacy

• The McNamara fallacy (or quantitative fallacy), involves making a
decision based solely on quantitative observations (or metrics) and
ignoring all others.

• The reason given is often that these other observations cannot be
proven.

● “There seems to be a general misunderstanding to the effect that a mathematical model
cannot be undertaken until every constant and functional relationship is known to high
accuracy. … to omit such variables is equivalent to saying that they have zero effect...
Probably the only value known to be wrong …” - J. W. Forrester

55

McNamara on Vietnam

The McNamara fallacy originates from the Vietnam War, in which
enemy body counts were taken to be a precise and objective
measure of success. War was reduced to a mathematical model: by
increasing enemy deaths and minimizing one's own, victory was
assured. … The fallacy refers to McNamara's belief as to what led the
United States to defeat in the Vietnam War—specifically, his
quantification of success in the war (e.g. in terms of enemy body
count), ignoring other variables.

56

Thought Experiment: Defect Metrics

• Defect Density = known bugs / line of code
• System Spoilage = time to fix post-release defects / total system

development time
• Considerations:

• Post-release vs. pre-release

• What counts as a defect? Severity? Relevance?

• What size metric is used?

57

Measurement Strategies

• Automated measures on code repositories
• Use or collect process data
• Instrument the program (e.g., in-field crash reports)
• Ask humans: surveys, interviews, controlled experiments, expert

judgments
• Statistical analysis of sample

58

Metrics and Incentives

59

Incentivizing Productivity

• What happens when developer bonuses are based on …
• Lines of code per day

• Amount of documentation written

• Low number of reported bugs in your code

• Low number of open bugs in your code

• High number of bugs fixed

• Accuracy of time estimates

60

An Example Metric Incentive

• At a “large top-five public research university”, the engineering deans
used “research dollars expended per square foot” as a ranking and
incentive metric for departments.

• A department with more “RDE/ft^2” was doing better and would
get more perks from the dean

• How would you arrive at this metric?
• What could go wrong?

62

Software Metric Warning

• Most software metrics are controversial

• Usually based on plausibility arguments (not rigorous validation)

• Cyclomatic Complexity was repeatedly refuted and is still used

• “Similar to the attempt of measuring the intelligence of a person
in terms of the weight or circumference of the brain.”

63

Software Metric Failure

• ROUGE score used to determine quality
of machine-generated prose

• Commonly used to evaluate effectiveness
of machine learning models that
automatically document code

• However, developer productivity did not
correlate with higher ROUGE scores

[Stapleton et. al. A Human Study of Comprehension and Code
Summarization, ICPC 2020]

Software Metric Advice

• Use software metrics carefully
• Be careful about claims about human factors (e.g., readability) and

quality, unless validated
• Calibrate metrics using your project history and the histories of other

projects

• Metrics can be gamed: you get what you measure

65

Successful Measurement Programs

• Set solid measurement objectives and plans.
• Make measurement part of the process.
• Gain a thorough understanding of measurement.
• Focus on cultural issues.
• Create a safe environment to collect and report true data.
• Cultivate a predisposition to change.
• Develop a complementary suite of measures.

66

Questions when Choosing A Metric

• What is the purpose of this measure?

• What is the scope of this measure?

• What attribute are you trying to measure?

• What is the attribute’s natural scale?

• What is the attribute’s natural variability?

• What instrument are you using to measure
the attribute, and what reading do you take
from the instrument?

67

• What is the instrument’s natural scale?

• What is the reading’s natural variability
(normally called measurement error)?

• What is the attribute’s relationship to the
instrument?

• What are the natural and foreseeable side
effects of using this instrument?

[Cem Kaner and Walter P. Bond. “Software Engineering
Metrics: What Do They Measure and How Do We Know?”
2004]

Begel and Zimmermann Microsoft Survey

● “Suppose you could work with a team of data
scientists and data analysts who specialize in studying
how software is developed. Please list up to five
questions you would like them to answer. Why do you
want to know? What would you do with the
answers?”

68

Top Questions (1/2)

• How do users typically use my application?
• What parts of a software product are most used and/or loved by customers?
• How effective are the quality gates we run at checkin?
• How can we improve collaboration and sharing between teams?
• What are best key performance indicators (KPIs) for monitoring services?
• What is the impact of a code change or requirements change to the project and

tests?

69

Top Questions (2/2)

• What is the impact of tools on productivity?
• How do I avoid reinventing the wheel by sharing and/or searching for code?
• What are the common patterns of execution in my application?
• How well does test coverage correspond to actual code usage by our

customers?
• What kinds of mistakes do developers make in their software? Which ones

are the most common?
• What are effective metrics for ship quality?

70

Bottom Questions

• Which individual measures correlate with employee productivity (e.g., employee age,
tenure, engineering skills, education, promotion velocity, IQ)?

• Which coding measures correlate with employee productivity (e.g., lines of code, time it
take to build the software, a particular tool set, pair programming, number of hours of
coding per day, language)?

• What metrics can be used to compare employees?
• How can we measure the productivity of a Microsoft employee?
• Is the number of bugs a good measure of developer effectiveness?
• Can I generate 100% test coverage?

71

Questions?

Next exciting episode:

Quality Assurance and Testing

72

	Slide Number 1
	One-Slide Summary
	Story So Far
	Who Cares About Process Again?
	Consider Time Ranges: A vs. B+C
	Who Cares About Process Again?
	Outline
	Maintainability Index
	Maintainability Index in a Nutshell
	Design Rationale
	The Magic Formula
	The Magic Formula
	Lines of Code
	Lines of Code: Normalized
	Languages: Normalized
	Languages: Normalized
	Halstead Volume
	Halstead Example
	Cyclomatic Complexity
	Cyclomatic Complexity
	Maintainability Index: Origins
	Case Study Thoughts
	Measurement for �Decision Making in Software
	Software Quality Metric
	Measurement for Decision Making
	Software Qualities
	Process Qualities
	Positive Example: Benchmark-Based Metrics
	Measurement is Difficult
	Trivia: Computer Science
	Trivia: Computer Science
	Psychology: “Perception”
	Psychology: “Perception”
	Psychology: Social Influence
	Validity
	Everything is Measurable
	Slide Number 40
	Streetlight Effect
	Dangers When Using Metrics
	Lies, damned lies, and …
	… statistics
	False Positive Paradox
	Understanding Data
	Measurement Scales
	To Argue Causation
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Confounding Variables
	Confounding Variables
	Confounds in Software Analysis
	McNamara Fallacy
	McNamara on Vietnam
	Thought Experiment: Defect Metrics
	Measurement Strategies
	Metrics and Incentives
	Incentivizing Productivity
	An Example Metric Incentive
	Software Metric Warning
	Software Metric Failure
	Software Metric Advice
	Successful Measurement Programs
	Questions when Choosing A Metric
	Begel and Zimmermann Microsoft Survey
	Top Questions (1/2)
	Top Questions (2/2)
	Bottom Questions
	Questions?

