Homework and OH

e HWO: due this Sunday
e Autograder and Brightspace
e Team up or not?

e Environment

e Can |l use XYZ instead of Ubuntu 22.04 or VirtualBox/EC2?

* Nothing “bad” will happen: | will not fail you in this class; you are responsible for the
development environment

50 WE'LL CALL
THIS APl, THEN— _

WAIT WAIT
WAIT. THIS IS
_1\ TOO LOW-LEVEL,

Eug Bash by Hans Bjordahl

| NEED CONTEXT.
THE 10,000-FOOT |

S0 WE HAVE TWO
| APPLICATIONS THAT=

IT ALL BEGAN FOUR
BILLIONM YEARS AGO

NO. NO.

PULL Y

WAY BACK. THE
REALLY HIGH- |5 Log

ON A PLANET CALLED

0K, THAT'S
HIGH ENOUGH,

@=h), LEVEL VIEW.

http:s wwm.bugbash, net/

The Software Development Lifecycle (+HW1)

LJE WJILL BE ADOPTINMNG
THE BEST PRACTICES
IN CUR INDUSTRY,
JUST LIKE EVERYONE
ELSE.

,.'I ﬁ
| BEST

| PRACTICES

IF EVERYONE 1S
DOING IT, BEST
PRACTICES IS5 THE
SAME THING AS

wiwie di|bert com scoftadars Bl com

4308 =2008 Soott Adarma, no./Dis. by UFS, ne

STOP MAKING
MEDIOCRITY
S0UND BAD!
\/
SORRY.

One-Slide Summary

* A software development process organizes activity into distinct
phases (e.g., design, coding, testing, etc.).
e Processes can increase efficiency, but are often implemented poorly.

e Effort estimation is based on historical information
 Modeling or experience both used for planning
e Risk leads to uncertainty, mitigated by identification and minimization

e A project plan (milestones, deliverable) includes all considerations of risk
management

 Measuring progress is difficult

Process

. A software development process (a.k.a software development life
cycle or software development model) divides software development

into distinct phases to improve design, product, and project
management.

. Process is the set of activities and associated results that produce a

WELCOMETO AGILE
; —E‘

software product.

. Examples include the waterfall model,
spiral development, agile development,
and extreme programming.

L
WHERE THE STORIES ARE MADE UP

= AND THE POINTS DONT MATTERR

ERr-TSL I waaTast

Richard Feynman's

Problem Solving Algorithm
\

1.Write down the problem.
2.Think real hard.
3.Write down the solution.

- As facetiously suggested by Murray Gell-Mann, a
colleague of Feynman, in the New York Times

I think you should be a little
more specific, here in Step 2

A Straw Software Process

1. Discuss the software that needs to be written

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

1. Discuss the software that needs to be written

2. Write some code

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

Discuss the software that needs to be written
Write some code

. Test the code to identify the defects
Debug to find causes of defects

pwoN e

| once had complaints that a process was taking
too long. no way to make it faster without gutting
the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code

3. Test the code to identify the defects
4. Debug to find causes of defects

5

FiX the defeCtS | once had complaints thafc a process was takln'g
too long. no way to make it faster without gutting

the whole system, so i added a progress bar,

which actually made it take 5% longer, but the
complaints stopped.

A Straw Software Process

Discuss the software that needs to be written
Write some code

. Test the code to identify the defects
. Debug to find causes of defects

FiX the defeCtS | once had complaints thafc a process was takln'g
too long. no way to make it faster without gutting

the whole system, so i added a progress bar,

oUW N e

If not dOne, return to Step 1 which actually made it take 5% longer, but the

complaints stopped.

Waterfall Model

In the waterfall software development model,
the following phases are carried out in order:

System and software requirements
Elicited from customer, captured in a document

Analysis

Derive models, schema, and business rules
Design

Software architecture

Coding
Development, proving, and integration of software

Testing
Systematic discovery and debugging of defects

Operations

Installation, migration, support, and maintenance of
complete systems

Expectation

Waterfall Model

Reality

19

Tell Me Lies

Hequirements ’ Product requirements document

1 _,
—B Design ‘ Software architecture
‘. i | Implementation| JEEEEUWEE
gnextend |
[aox, I vem, | | [aox,] || Res., | | MUX ,, |
| Mem,, | |R,| [Mux,.] [Mux,, | | AL, |
Maintenance

Spiral Development Model

. The spiral software process model focuses on the construction of an
increasingly-complete series of prototypes while accounting for risk.

A Cumulative cost

1.Determine Progress 2. Identify and
objectives /‘—_—“‘- resolve risks

i eration
plan Prototype 1 \ Prototype 2 | prototype
Concept of
Requirements Draft

Review

Implementation

4. Plan the Release
next iteration 3. Development
and Test

Agile Development Model

e Agile: ability to create and respond
to change, deal with uncertain and

turbulent environment
e Agile software development is an
Testin ~ Mong
umbrella term for a set of
frameworks and practices inspeaiiona i
0 scrum
O extreme programming
O sprints/iteration
9] Stand_ups Interation 2 J
0 kanban
O pair programming

O test-driven development

https://www.agilealliance.org/agile101/

Activity Effort over Time

100%

Percent
of
Effort

0%

100% productive coding?

Project
beginning

Time

Project
end

24

Activity Effort over Time

o)
100% Trashing / Rework

Percent
of
Effort

0%

Productive Coding

Project
beginning

Time

Project
end

25

|dealized View

o)
100% Trashing / Rework
Percent
of Productive Coding
Effort
Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,
Development and Integration Plan
0%

Project
beginning end

Time Project

26

Result of Failing to Plan

100%

Percent
of
Effort

0%

Trashing / Rework

Productive Coding

Process

Project Time Project
beginning end

27

Example Process Issues and Outcomes

Requirements: Mid-project informal agreement to changes suggested by customer or
manager

. —> Project scope expands 25-50%

Quality Assurance: Late detection of requirements and design issues. Test-debug-
reimplement cycle limits development of new features.

. — Release with known defects

Defect Tracking: Bug reports collected informally
. — Bugs forgotten

System Integration: Integration of independently-developed components at the end of the
project
. — Interfaces out of sync

Source Code Control: Accidentally overwritten changes
. — Lost work

Scheduling: When project is behind, developers are asked weekly for new estimates
. —» Project falls further behind

28

Survival Mode

. Missed deadlines - “solo development mode”, developers stop
interacting with testers, technical writers, managers, etc.

. “The producers even set a deadline; they gave a specific date for the end of the crunch,
which was still months away from the title's shipping date, so it seemed safe.
That date came and went. And went, and went. When the next news came it was not
about a reprieve; it was another acceleration: twelve hours six days a week, 9am to 10pm.

Weeks passed. Again the producers had given a termination date on this crunch that
again they failed. Throughout this period the project remained on schedule. The long
hours started to take its toll on the team; people grew irritable and some started to get ill.
People dropped out in droves for a couple of days at a time, but then the team seemed to
reach equilibrium again and they plowed ahead. The managers stopped even talking
about a day when the hours would go back to normal.” — EA: The Human Story

29

Desired Allocation

100% Trashing / Rework

Percent
of
Effort

Productive Coding

0%

Project
beginning end 30

Time Project

Process Hypothesis

. A process can increase flexibility and efficiency for software
development

. If this is true, an up-front investment (of resources, e.g., “time”) in
process can yield greater returns later

THATS MANAGEMENT
uﬁggungﬁ%;gjf FOUL-UP NUMBER TLJO. WE DONT ANTICIPATE
TIMELIME? IT USUALLY HAPPENS ANY MANAGEMENT
AROUND THE THIRD MISTAKES.
LWEEK. |
THATS |

3otk 2006 Scott Adama, Inc.fDist by UFS, Inc.

wiww. dilbert.com socottadams® aol.com
-

e A | Iy |
T / g-‘ || :IAW';J \ .'F'_
J — [=

@ Scott Adams, Inc./Dist. by UFS, Inc.

Efficiency: Defect Cost vs. Creation Time

Costto
Correct

Phase Thata
Defect Is Created

Fequirements

Architecture

Detailed design

Cotstaction

Eequirements Architecture Detailed Construction Ilaintenance
design

Phase That a Defect Is Corrected

Copymght 1995 Steven C. Wb Connell. Feprinted with perrmssion
from Soffware Project Survival Guide (IWlicrosoft Press, 1998,

32

Efficiency: Defect Cost vs. Detection Time

* An IBM report gives an average defect repair cost of
e $25 during coding
e $100 at build time
e $450 during testing/QA
¢ $16,000 post-release

. [L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]

Psychophysics

. Which two figures have the same # of dots?

Psychophysics: Weber's Law

. Weber's Law states that “simple differential sensitivity is inversely

proportional to the size of the components of the difference; relative
differential sensitivity remains the same regardless of size."

. That is “the perceived change in stimuli is proportional to the [size of]

initial stimuli.” —

Psychophysics: Weber's Law

mplication for SE: Things you could notice on small-scale projects are
narder to notice on large-scale projects. Your intuitions (“l can spot
ougs in this”) from small class projects do not carry over.

Psychology

e Consider a hypothetical cleanup scenario involving two hazardous
waste sites X and Y.
« X causes 8 cases of cancer annually (large city)
Y causes 4 cases of cancer annually (small city)

 Rank these three cleanup approaches:
c A X—>4. Y > 2.
eB.X—>7.Y—0.
eC.X—>3.Y - 3.

Psychology: Zero-Risk Bias

 Three cleanup approaches:
e A X—>4.Y — 2.
eB.X—>7.Y—0.
eC.X—>3.Y— 3.

* “The bias was defined as not ranking the complete-reduction option

[B] as the worst of the three options. (It should be ranked worst
because it saves fewer cancer cases.) 42% of the subjects exhibited

[] \ [] I [] ”
this ‘zero-risk' bias.
. [Baron; Gowda; Kunreuther (1993). "Attitudes toward managing hazardous waste: What should be cleaned up and who
should pay for it?". Risk Analysis. 13: 183—-192.]

Psychology: Zero-Risk Bias

e Zero-risk bias is a tendency to prefer the complete elimination of a risk even
when alternative options produce a greater reduction in risk (overall).

e “42% of the subjects exhibited this zero-risk' bias.”
 Who? 60 CEOs of Oil and Chem Companies, 57 Economists, 94 Environmentalists, 29
Experts on Hazardous Waste, 89 Judges, 104 Legislators.

* Implications for SE: Your managers (and you) are likely to mistakenly favor
risk-reduction strategies that reduce a risk to zero, even to the overall
detriment of the company/product.

el %
HERE JES A PSEUDO-SCIENTIST

Process Topics

e Estimating Effort
e Risk and Uncertainty
* Planning and Scheduling

R

. e :

| & ;..‘ .-l';‘ '.‘?u . h""
N L e .

¢ ' B s 'l -

LS ' o

+3#
s

WHERE THE I TGS RRENT

o T
T

44

Estimating Time Costs

e How long would you estimate to develop a ...

« Java Monopoly game (you alone)

e Bank smartphone app (you with a team of four developers, one
with IPhone experience, one with a security background)

e Estimate in eight-hour workdays (20 in a month, 220 per year)

e Approach: break down the task into ~five smaller tasks and estimate
them. Repeat.

Basic Plan: Learn from Experience

EXPERIENCE

It's what lets you recognize a mistake when you make it again.

Constructive Cost Model

e A constructive cost model (cocomo) is a predictive model of time
costs based on project history.

* This requires experience with similar projects.
* This rewards documentation of experience.

e Basically, it's an empirically-derived set of “effort multipliers”. You
multiply the time cost by some numbers from a chart:

Ratings

Cost Drivers Very Low Low Nominal High Very High | Extra High
Product attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40
Size of application database 0.94 1.00 1.08 1.16
Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65
Hardware attributes
Run-time performance constraints 1.00 1.1 1.30 1.66
Memory constraints 1.00 1.06 1.21 1.56
Volatility of the virtual machine environment 0.87 1.00 1.15 1.30
Required turnabout time 0.87 1.00 1.07 1.15
Personnel attributes
Analyst capability 1.46 1.19 1.00 0.86 0.71
Applications experience 1.29 1.13 1.00 0.91 0.82
Software engineer capability 1.42 1.17 1.00 0.86 0.70
Virtual machine experience 1.21 1.10 1.00 0.90
Programming language experience 1.14 1.07 1.00 0.95
Project attributes
Application of software engineering methods 1.24 1.10 1.00 0.91 0.82
Use of software tools 1.24 1.10 1.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

48

Risk and Uncertainty

* Risk management is the identification, assessment, and prioritization
of risks, followed by efforts to minimize, monitor and control
unfortunate event outcomes and probabilities.

* Risk management is a key project management task. Examples:

52

Risk and Uncertainty

* Risk management is the identification, assessment, and prioritization
of risks, followed by efforts to minimize, monitor and control
unfortunate event outcomes and probabilities.

* Risk management is a key project management task. Examples:

 Staff illness or turnover, product is too slow, competitor introduces
a similar product, etc.

54

Uncertainty Reduction Over Time

100%
T5%
0%
S-iEE T 0L
E stim ate
Grrowth
(i1 lines of U
SOLMCE
code) g
-50%
-7 5%0
-100%;
F 1 F 1 F 1 F F 1 A
Itdtial Approved Beguirements Architecture Detailed Product
product product design compl ete

defirntion defirition

Copyrght 1998 Steven C . MeConnell. Eeprinted with penmission from Sofheave Proje et Swrwival Guide (Microsoft Press, 1998

“Innovation”

Innovation and Risk

 Most software projects are innovative
e Google, Amazon, EBay, Netflix
e Autonomous vehicles, robotics, biomed
e Natural language processing, graphics

e Routine projects (now, not ten years ago)
 E-Commerce website, adaptive control systems (e.g., thermostat), etc.

e As part of the innovation cycle, routine tasks are automated ... leaving only
innovative ones!

56

No Catch-All Solution

e Address risk early

e Selectively innovate to increase value while minimizing risk
(i.e., focus risk where needed)

e Use iteration and feedback (e.g., prototypes) CANT TELLIETHENEW. GUY IS JUST

e Estimate likelihood and consequences INEXRERIENGED
* Requires experienced project leads

* Rough estimates (e.g., <10%, <25%) are OK
e Focus on top ten risks

e Have contingency plans

Examples of Risk Management Strateg

Organizational financial
problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business and presenting reasons why cuts to the
project budget would not be cost-effective.

Recruitment problems

Alert customer to potential difficulties and the possibility of
delays; investigate buying-in components.

Staff illness

Reorganize team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective components

Replace potentially defective components with bought-in
components of known reliability.

Requirements changes

Derive traceability information to assess requirements change
impact; maximize information hiding in the design.

Organizational
restructuring

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Database performance

Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying-in components; investigate use of a program
or test generator.

€5

58

Planning

e A project should plan time, cost and resources adequately to estimate
the work needed and to effectively manage risk during project
execution.

 This includes scoping the work, estimating time costs, developing

the schedule and budget, mitigating risks, developing quality
assurance measures, etc.

Remorse pinned me against the seat for one_long sec-
ond. What had I just done to Jacob?
But remorse couldn’t hold me very long.

IN THAT CASE, USE A DIFFERENT WORD TO DESCRIBE THE SECOND.

59

Difficulties in Software Planning

* Typically a one-time endeavor
(unigue wrt. goals, constraints, organization, etc.)

e Typically involves an innovative technology

* Intangible results (intermediate or final) mean progress may be hard
to measure

e Software projects tend to fail more often than other industrial
projects

of
)

Measuring Progress?

“I’'m almost done with the app. The frontend is almost
fully implemented. The backend is fully finished except
for the one stupid bug that keeps crashing the server. |
only need to find the one stupid bug, but that can

probably be done in an afternoon. We should be ready
to release next week.”

static int IsNegative(float argqg)
{
char*p = (char*) malloc(20);
sprintf (p, "%f", arg);

return p[0]=="'-";
1

Milestones and Deliverables

 Milestones and deliverables make intermediate progress observable,
especially for software

A milestone is a clean end point of a (sub)task
« Used by the project manager
* Reports, prototypes, completed subprojects, etc.
e “80% done” Is not a suitable milestone

e Deliverables are results for the customer
e Used by the customer, outward facing

|dealized Project Planning

Budget, Check progress

Identify constraints Personnel,
Deadlines

Estimate project
parameters

Reestimate project

parameter feature

Define milestones activities begin requests

Refine schedule

Create schedule

Problem?

renegotiate constraints Technical review

Gantt Diagram

457 1157 187 2577 1/8 B/R 15/8 228 20/ 39 12/9 19/4
F

T4 L
T1
T |

M1

7 | |

T3 | |

M5 A : '
TR
YEX I
M2 4
Ta |
TS5
& M4
Tu .
M7 | '
T10 ['
* M6
rit | '
& MB
T12
* t*'ml:i’

64

Scheduling

* Inaccurate predictions are normal -
update

* The “almost done” problem: the last 10%
of work takes 40% of the time

 Avoid depending entirely on developer
estimates

100%

90%

% completed

planned actual

reported
progres

time

Story So Far

* Software processes can help, but to use them we need project planning,
which needs effort estimation, which is complicated by uncertainty, which
stems from risk and a lack of data.

 So ... we don't know anything?

. Sta\étuned for next time for measurement, a potential solution to our
problems.

e HWO due this Sunday
e HW6 — start early: GitHub, research topics

HW 1

* This HW is about test coverage
oWe'll talk more about this later

* HW1la due 1/18 HW1bcd due 1/25

e 5 submission attempts per day

T Test Suite Quality
01/20/26 Metrics

[ga]

68

HW 1

https://huang.isis.vanderbilt.edu/cs4278-sp26/hwl.php

69

https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php
https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php
https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php

	Homework and OH
	Slide Number 7
	One-Slide Summary
	Process
	Richard Feynman's�Problem Solving Algorithm
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	Waterfall Model
	Tell Me Lies
	Spiral Development Model
	�Agile Development Model
	Activity Effort over Time
	Activity Effort over Time
	Idealized View
	Result of Failing to Plan
	Example Process Issues and Outcomes
	Survival Mode
	Desired Allocation
	Process Hypothesis
	Efficiency: Defect Cost vs. Creation Time
	Efficiency: Defect Cost vs. Detection Time
	Psychophysics
	Psychophysics: Weber's Law
	Psychophysics: Weber's Law
	Psychology
	Psychology: Zero-Risk Bias
	Psychology: Zero-Risk Bias
	Process Topics
	Estimating Time Costs
	Basic Plan: Learn from Experience
	Constructive Cost Model
	Slide Number 48
	Risk and Uncertainty
	Risk and Uncertainty
	Slide Number 54
	Uncertainty Reduction Over Time
	Innovation and Risk
	No Catch-All Solution
	Examples of Risk Management Strategies
	Planning
	Difficulties in Software Planning
	Measuring Progress?
	Milestones and Deliverables
	Idealized Project Planning
	Gantt Diagram
	Scheduling
	Story So Far
	HW1
	HW1

