
Homework and OH

• HW0: due this Sunday
• Autograder and Brightspace
• Team up or not?
• Environment

• Can I use XYZ instead of Ubuntu 22.04 or VirtualBox/EC2?
• Nothing “bad” will happen: I will not fail you in this class; you are responsible for the

development environment

The Software Development Lifecycle (+HW1)

One-Slide Summary

• A software development process organizes activity into distinct
phases (e.g., design, coding, testing, etc.).

• Processes can increase efficiency, but are often implemented poorly.

• Effort estimation is based on historical information
• Modeling or experience both used for planning
• Risk leads to uncertainty, mitigated by identification and minimization
• A project plan (milestones, deliverable) includes all considerations of risk

management
• Measuring progress is difficult

10

Process

● A software development process (a.k.a software development life
cycle or software development model) divides software development
into distinct phases to improve design, product, and project
management.

● Process is the set of activities and associated results that produce a
software product.

● Examples include the waterfall model,
spiral development, agile development,
and extreme programming.

11

Richard Feynman's
Problem Solving Algorithm
1.Write down the problem.
2.Think real hard.
3.Write down the solution.

– As facetiously suggested by Murray Gell-Mann, a
colleague of Feynman, in the New York Times

https://wiki.c2.com/?FeynmanAlgorithm

12

A Straw Software Process

1. Discuss the software that needs to be written

13

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code

14

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects

15

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects

16

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects

17

A Straw Software Process

1. Discuss the software that needs to be written
2. Write some code
3. Test the code to identify the defects
4. Debug to find causes of defects
5. Fix the defects
6. If not done, return to Step 1

18

Waterfall Model
● In the waterfall software development model,

the following phases are carried out in order:

● System and software requirements
● Elicited from customer, captured in a document

● Analysis
● Derive models, schema, and business rules

● Design
● Software architecture

● Coding
● Development, proving, and integration of software

● Testing
● Systematic discovery and debugging of defects

● Operations
● Installation, migration, support, and maintenance of

complete systems

19

Tell Me Lies

20

Spiral Development Model

● The spiral software process model focuses on the construction of an
increasingly-complete series of prototypes while accounting for risk.

21

Agile Development Model

https://www.agilealliance.org/agile101/

• Agile: ability to create and respond
to change, deal with uncertain and
turbulent environment

• Agile software development is an
umbrella term for a set of
frameworks and practices
o scrum
o extreme programming
o sprints/iteration
o stand-ups
o kanban
o pair programming
o test-driven development

Activity Effort over Time

24

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

100% productive coding?

Activity Effort over Time

25

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Productive Coding

Idealized View

26

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Process: Cost and Time estimates, Writing Requirements, Design,
Change Management, Quality Assurance Plan,

Development and Integration Plan

Productive Coding

Result of Failing to Plan

27

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

 Process

Productive Coding

Example Process Issues and Outcomes
● Requirements: Mid-project informal agreement to changes suggested by customer or

manager
● → Project scope expands 25-50%

● Quality Assurance: Late detection of requirements and design issues. Test-debug-
reimplement cycle limits development of new features.

● → Release with known defects

● Defect Tracking: Bug reports collected informally
● → Bugs forgotten

● System Integration: Integration of independently-developed components at the end of the
project

● → Interfaces out of sync

● Source Code Control: Accidentally overwritten changes
● → Lost work

● Scheduling: When project is behind, developers are asked weekly for new estimates
● → Project falls further behind

28

Survival Mode

● Missed deadlines → “solo development mode”, developers stop
interacting with testers, technical writers, managers, etc.

● “The producers even set a deadline; they gave a specific date for the end of the crunch,
which was still months away from the title's shipping date, so it seemed safe.
 That date came and went. And went, and went. When the next news came it was not
about a reprieve; it was another acceleration: twelve hours six days a week, 9am to 10pm.

Weeks passed. Again the producers had given a termination date on this crunch that
again they failed. Throughout this period the project remained on schedule. The long
hours started to take its toll on the team; people grew irritable and some started to get ill.
People dropped out in droves for a couple of days at a time, but then the team seemed to
reach equilibrium again and they plowed ahead. The managers stopped even talking
about a day when the hours would go back to normal.” – EA: The Human Story

 https://ea-spouse.livejournal.com/274.html

29

Desired Allocation

30

Percent
of
Effort

TimeProject
beginning

Project
end

100%

0%

Trashing / Rework

Process

Productive Coding

Process Hypothesis

● A process can increase flexibility and efficiency for software
development

● If this is true, an up-front investment (of resources, e.g., “time”) in
process can yield greater returns later

31

Efficiency: Defect Cost vs. Creation Time

32

Efficiency: Defect Cost vs. Detection Time

• An IBM report gives an average defect repair cost of
• $25 during coding
• $100 at build time
• $450 during testing/QA
• $16,000 post-release

● [L. Williamson. IBM Rational software analyzer: Beyond source code. 2008.]

33

Psychophysics

● Which two figures have the same # of dots?

38

A B

DC

Psychophysics: Weber's Law

● Weber's Law states that “simple differential sensitivity is inversely
proportional to the size of the components of the difference; relative
differential sensitivity remains the same regardless of size."

● That is “the perceived change in stimuli is proportional to the [size of]
initial stimuli.”

39

Psychophysics: Weber's Law

● Implication for SE: Things you could notice on small-scale projects are
harder to notice on large-scale projects. Your intuitions (“I can spot
bugs in this”) from small class projects do not carry over.

40

Psychology

• Consider a hypothetical cleanup scenario involving two hazardous
waste sites X and Y.

• X causes 8 cases of cancer annually (large city)
• Y causes 4 cases of cancer annually (small city)

• Rank these three cleanup approaches:
• A. X → 4. Y → 2.
• B. X → 7. Y → 0.
• C. X → 3. Y → 3.

41

Psychology: Zero-Risk Bias

• Three cleanup approaches:
• A. X → 4. Y → 2.
• B. X → 7. Y → 0.
• C. X → 3. Y → 3.

• “The bias was defined as not ranking the complete-reduction option
[B] as the worst of the three options. (It should be ranked worst
because it saves fewer cancer cases.) 42% of the subjects exhibited
this `zero-risk' bias.”

● [Baron; Gowda; Kunreuther (1993). "Attitudes toward managing hazardous waste: What should be cleaned up and who
should pay for it?". Risk Analysis. 13: 183–192.]

42

Psychology: Zero-Risk Bias

• Zero-risk bias is a tendency to prefer the complete elimination of a risk even
when alternative options produce a greater reduction in risk (overall).

• “42% of the subjects exhibited this `zero-risk' bias.”
• Who? 60 CEOs of Oil and Chem Companies, 57 Economists, 94 Environmentalists, 29

Experts on Hazardous Waste, 89 Judges, 104 Legislators.

• Implications for SE: Your managers (and you) are likely to mistakenly favor
risk-reduction strategies that reduce a risk to zero, even to the overall
detriment of the company/product.

43

Process Topics

• Estimating Effort
• Risk and Uncertainty
• Planning and Scheduling

44

Estimating Time Costs

• How long would you estimate to develop a …
• Java Monopoly game (you alone)
• Bank smartphone app (you with a team of four developers, one

with iPhone experience, one with a security background)

• Estimate in eight-hour workdays (20 in a month, 220 per year)
• Approach: break down the task into ~five smaller tasks and estimate

them. Repeat.

45

Basic Plan: Learn from Experience

46

Constructive Cost Model

• A constructive cost model (cocomo) is a predictive model of time
costs based on project history.

• This requires experience with similar projects.
• This rewards documentation of experience.

• Basically, it's an empirically-derived set of “effort multipliers”. You
multiply the time cost by some numbers from a chart:

47

48

Risk and Uncertainty

• Risk management is the identification, assessment, and prioritization
of risks, followed by efforts to minimize, monitor and control
unfortunate event outcomes and probabilities.

• Risk management is a key project management task. Examples:

52

Risk and Uncertainty

• Risk management is the identification, assessment, and prioritization
of risks, followed by efforts to minimize, monitor and control
unfortunate event outcomes and probabilities.

• Risk management is a key project management task. Examples:
• Staff illness or turnover, product is too slow, competitor introduces

a similar product, etc.

53

54

Uncertainty Reduction Over Time

55

Innovation and Risk

• Most software projects are innovative
• Google, Amazon, EBay, Netflix
• Autonomous vehicles, robotics, biomed
• Natural language processing, graphics

• Routine projects (now, not ten years ago)
• E-Commerce website, adaptive control systems (e.g., thermostat), etc.

• As part of the innovation cycle, routine tasks are automated … leaving only
innovative ones!

56

“Innovation”

No Catch-All Solution

• Address risk early
• Selectively innovate to increase value while minimizing risk

(i.e., focus risk where needed)
• Use iteration and feedback (e.g., prototypes)
• Estimate likelihood and consequences

• Requires experienced project leads
• Rough estimates (e.g., <10%, <25%) are OK
• Focus on top ten risks

• Have contingency plans

57

Examples of Risk Management Strategies

58

Risk Strategy

Organizational financial
problems

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business and presenting reasons why cuts to the
project budget would not be cost-effective.

Recruitment problems Alert customer to potential difficulties and the possibility of
delays; investigate buying-in components.

Staff illness Reorganize team so that there is more overlap of work and
people therefore understand each other’s jobs.

Defective components Replace potentially defective components with bought-in
components of known reliability.

Requirements changes Derive traceability information to assess requirements change
impact; maximize information hiding in the design.

Organizational
restructuring

Prepare a briefing document for senior management showing
how the project is making a very important contribution to the
goals of the business.

Database performance Investigate the possibility of buying a higher-performance
database.

Underestimated
development time

Investigate buying-in components; investigate use of a program
or test generator.

Planning

• A project should plan time, cost and resources adequately to estimate
the work needed and to effectively manage risk during project
execution.

• This includes scoping the work, estimating time costs, developing
the schedule and budget, mitigating risks, developing quality
assurance measures, etc.

59

Difficulties in Software Planning

• Typically a one-time endeavor
(unique wrt. goals, constraints, organization, etc.)

• Typically involves an innovative technology
• Intangible results (intermediate or final) mean progress may be hard

to measure

• Software projects tend to fail more often than other industrial
projects

60

Measuring Progress?

“I’m almost done with the app. The frontend is almost
fully implemented. The backend is fully finished except
for the one stupid bug that keeps crashing the server. I
only need to find the one stupid bug, but that can
probably be done in an afternoon. We should be ready
to release next week.”

61

Milestones and Deliverables

• Milestones and deliverables make intermediate progress observable,
especially for software

• A milestone is a clean end point of a (sub)task
• Used by the project manager
• Reports, prototypes, completed subprojects, etc.
• “80% done” is not a suitable milestone

• Deliverables are results for the customer
• Used by the customer, outward facing

62

Idealized Project Planning

63

Identify constraints

Estimate project
parameters

Define milestones

Create schedule

activities begin

Check progress

Reestimate project
parameter

Refine schedule

renegotiate constraints Technical review

Problem?

no

yes

Done? yes
no

Abort?

Budget,
Personnel,
Deadlines

new
feature

requests

Gantt Diagram

64

Scheduling

• Inaccurate predictions are normal →
update

• The “almost done” problem: the last 10%
of work takes 40% of the time

• Avoid depending entirely on developer
estimates

65

%
 c

om
pl

et
ed

90
%

10

0%

time

reported
progress

planned actual

Story So Far

• Software processes can help, but to use them we need project planning,
which needs effort estimation, which is complicated by uncertainty, which
stems from risk and a lack of data.

• So … we don't know anything?

• Stay tuned for next time for measurement, a potential solution to our
problems.

• HW0 due this Sunday
• HW6 – start early: GitHub, research topics

67

HW1

• This HW is about test coverage
oWe'll talk more about this later

• HW1a due 1/18 HW1bcd due 1/25

• 5 submission attempts per day

68

HW1

https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php

69

https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php
https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php
https://huang.isis.vanderbilt.edu/cs4278-sp26/hw1.php

	Homework and OH
	Slide Number 7
	One-Slide Summary
	Process
	Richard Feynman's�Problem Solving Algorithm
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	A Straw Software Process
	Waterfall Model
	Tell Me Lies
	Spiral Development Model
	�Agile Development Model
	Activity Effort over Time
	Activity Effort over Time
	Idealized View
	Result of Failing to Plan
	Example Process Issues and Outcomes
	Survival Mode
	Desired Allocation
	Process Hypothesis
	Efficiency: Defect Cost vs. Creation Time
	Efficiency: Defect Cost vs. Detection Time
	Psychophysics
	Psychophysics: Weber's Law
	Psychophysics: Weber's Law
	Psychology
	Psychology: Zero-Risk Bias
	Psychology: Zero-Risk Bias
	Process Topics
	Estimating Time Costs
	Basic Plan: Learn from Experience
	Constructive Cost Model
	Slide Number 48
	Risk and Uncertainty
	Risk and Uncertainty
	Slide Number 54
	Uncertainty Reduction Over Time
	Innovation and Risk
	No Catch-All Solution
	Examples of Risk Management Strategies
	Planning
	Difficulties in Software Planning
	Measuring Progress?
	Milestones and Deliverables
	Idealized Project Planning
	Gantt Diagram
	Scheduling
	Story So Far
	HW1
	HW1

