Exam 1 and HW 3 Review

CS 4278/5278: Principles of Software Engineering

Eric Li
Undergraduate Teaching Assistant

jiliang.li@vanderbilt.edu VANDERBILT

School of Engineering 1

Exa I I l 1 CS4278/5278 Principles of Software Engineering Lectures

T Exam 1 (Midterm)
02/27/24 Review + HW3 Review

e Tuesday March 5

TR Defect Reporting and
02/29/24 Triage
[bugs]

e Class Time (75 min)
o 1:15PM-2:30 PM
O FG H 'I 3 4 03/03/24 (None;thisisasunday) HW3 due

T Exam 1 (Midterm)
03/05/24

® TA' P I'O Cto red Th Fault Localization and

03/07/24 Profiling

[bugs]

VANDERBILT
\(School of Engineering

Exam Structure

e Paper-based, written exam (9-12 pages)

e Bring a pen/pencil

e 100 points in total

e 6-7 multipart questions + 1 multipart bonus (4-6 pts)

e Short answer, answer bank, fill in the blank

VANDERBILT
School of Engineering 3

Exam Structure

e Open-book, open-notes, open-internet

e NO ChatGPT

e NO collaborations/communications (e.g. online chatting)

VANDERBILT
School of Engineering 4

General Tips

e The exam will be fast-paced
e So study in advance (e.g. there’s no time to review/learn a

concept on the spot)

VANDERBILT
School of Engineering 5

Questions?

VANDERBILT
School of Engineering 6

Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage

\/

VANDERBILT
School of Engineering

7

Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage

V

VANDERBILT
School of Engineering

8

Process, Risk, Scheduling

e \Waterfall, Spiral, Agile - advantages and shortcomings

Implementation

Verification

AGILE METHODOLOGY

VANDERBILT
School of Engineering

9

Process, Risk, Scheduling

e Defect cost vs. creation/detection time

e Result of failing to plan

100%

Trashing/ Rework

0%

VANDERBILT
School of Engineering 10

Process, Risk, Scheduling

e Risks are everywhere in a software process

o Staff illness or turnover, market competition, slow progress...

e Risks, along with a lack of data, leads to uncertainties
e Uncertainties can be reduced by measurement

o More on this later...

VANDERBILT
School of Engineering 11

Process, Risk, Scheduling

e Zero-risk bias
o Prefer eliminating risk over larger reduction in risk

e Risk management is key to project management

Risk Project
Management Management

VANDERBILT
School of Engineering 12

Process, Risk, Scheduling

e Scheduling manages risk during project execution

e Scheduling is key to a software process

o A project should plan time, cost, resources, etc.

VANDERBILT
School of Engineering 13

Process, Risk, Scheduling

e Strategies to estimate time for a project
o A constructive cost model (cocomo)
e Milestones vs. deliverables
o Endpoint of a task vs. results for the customer

e “Almost done” problem

VANDERBILT
School of Engineering 14

Process, Risk, Scheduling

e In general, know your good practices and bad practices!

, VANDERBILT
\r School of Engineering 15

Questions?

VANDERBILT
School of Engineering 16

What's the narratives so far?

=> Software processes come with risks, which leads to uncertainty

-> Measurement and quality assurance can reduce uncertainty

VANDERBILT
\l School of Engineering 17

Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage

Vv

VANDERBILT
School of Engineering 18

Measurement and Quality Assurance

e Measurements measure all kinds of things
o Software quality, process quality, funding, etc.
e Measurements assist decision making

o Example: where should funds/effort be allocated?

VANDERBILT
School of Engineering 19

Measurement and Quality Assurance

e Measurement of code quality
o Maintainability Index
m Halstead Volume

m Cyclomatic Complexity

m Lines of Code

VANDERBILT
School of Engineering 20

Measurement and Quality Assurance

e Types of validity for a given metric
o Construct, predictive, external
e Metric-based incentives

o What could be a drawback?

VANDERBILT
School of Engineering 21

Measurement and Quality Assurance

e McNamara Fallacy

o Making decisions based solely on quantitative metrics
e Streetlight effect

o Searching for something and looking only where it is easiest
e Statistics

o False positive paradox, correlation != causation, confounding variables

VANDERBILT
School of Engineering 22

Measurement and Quality Assurance

e Measurements / software metrics should be used carefully!

VANDERBILT
School of Engineering 23

Measurement and Quality Assurance

e Example: you are working on a web development project.

©)

@)

©)

What could be a risk?
What's the uncertainty associated with the risk?
How can a measurement be used to reduce that uncertainty?

In general, what are some good vs. bad practices?

VANDERBILT
School of Engineering

24

Measurement and Quality Assurance

e Halting Problem in QA
o We can never be sure a program is correct
e Testing can give us an estimate

o Demonstrates the presence of bugs, not their absence

VANDERBILT
School of Engineering 25

Questions?

VANDERBILT
School of Engineering 26

Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage

\}

VANDERBILT
School of Engineering 27

Testing and Code Review

e Types of testing

o Regression - running old tests

o Unit - test individual pieces

o Integration - end-to-end testing

o Fuzz - testing lots of random inputs

o Penetration - testing for security vulnerabilities

o Mocking - test with simulated (not real) objects

VANDERBILT
School of Engineering 28

Testing and Code Review

e Coverage as a metric for test suite comparison

o Branch, line, & path coverage
o You should be able to calculate branch and line coverage

o s it easy to enumerate paths?
e Coverage instrumentation and relation to observer effect

o Instrumenting a program could change its behavior

VANDERBILT
School of Engineering 29

Testing and Code Review

e Mutation testing
o Defect seeding to test quality of a test suite
o Intentionally adding bugs, and then kill that mutant
e Mutation operator and mutant orders
e Competent programmer hypothesis & coupling effect
o How do they relate to mutation testing?
e Equivalent mutants

e Know how to calculate mutation score

VANDERBILT
School of Engineering 30

Testing and Code Review

e Atest case consists of

o An input (data), an oracle (expected output), and a comparator
e Test Input Generation (automatically)

o Guided by line/branch/path enumeration
e Test Oracle Generation (automatically)

o Oracle inference via invariants

VANDERBILT
School of Engineering 31

Testing and Code Review

e |[nvariants and oracle inference

o Invariants are predicate over expressions that is true on all

executions

o High quality/confidence invariants can serves as oracleS

e Common vs correct behavior for invariant inference

VANDERBILT
School of Engineering 32

Testing and Code Review

e Alpha Testing - by developers
e Beta Testing - by external users

e A/B testing - show impact of a difference in one feature

e Jest suite minimization

o How hard is it?

VANDERBILT
School of Engineering 33

Testing and Code Review

e Unit Testing

o You should know how to handwrite a unit test case with JUnit

o Criteria for good unit test

o @RepeatedTest, @Timeout, @BeforeEach, @ParameterizedTest
o try/ catch, assert

o Think about boundary / empty / error cases

VANDERBILT
School of Engineering 34

Testing and Code Review

e Inspection incentive and root cause analysis

o Why inspect? To prevent problems from reoccurring
e Metrics on inspection

o Accuracy, speed, focus fatigue, etc.
e Different types of code review

o Formal inspection, walkthrough, pair programming, passaround,

ad hoc

VANDERBILT
School of Engineering 35

Testing and Code Review

e Code review

o A second pair of eyes; find defects, improve quality
e Formal code inspection

o Ateam effort; more formal and holistic
e Pull request

o Proposed changes to merge into a repository

VANDERBILT
School of Engineering 36

Questions?

VANDERBILT
School of Engineering 37

Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage

Vv

VANDERBILT
School of Engineering 38

Dynamic, Static, and Dataflow Analysis

e Dynamic analysis - analyzing a program by running it

e Steps

O

O

O

Instrument the program at compile time (on source / binary code)
Run program systematically (controlled input or environment)
Monitor internal state at runtime

Analyze results (path coverage, information flow, profiling)

VANDERBILT
School of Engineering 39

Dynamic, Static, and Dataflow Analysis

Race condition

o Qutput depends on sequence or timing of “uncontrollable” events
Taint tracking using sources and sinks

Dynamic analysis is very input dependent

Dynamic analysis focuses on one property of output information

VANDERBILT
School of Engineering 40

Dynamic, Static, and Dataflow Analysis

e Examples of dynamic analysis
o [Eraser - shared variable must be guarded by a lock
o Chaos Monkey - random destructions of services
o CHESS - tracks different combinations of thread interleaving

o Driver Verifier - replaces default OS subroutines with others

e You need to understand what these tools are doing and what could

possibly go wrong with each tool

VANDERBILT
School of Engineering 41

Dynamic, Static, and Dataflow Analysis

e Soundness vs. completeness
o Sound analysis: no false negatives
m e.g. all bugs are identified
o Complete analysis: no false positives

m e.g. all reported bugs are actually bugs

VANDERBILT
School of Engineering 42

Dynamic, Static, and Dataflow Analysis

e Static analysis - analysis of code not at runtime
e Dataflow analysis - a popular approach to static analysis
e Main ideas
o Abstraction as hiding unnecessary details to simplify program

o Programs being simplified down to trees, graphs, or strings

VANDERBILT
School of Engineering 43

Dynamic, Static, and Dataflow Analysis

e Abstract Syntax Tree (AST) represents syntactic structure of

source code; it records only semantically relevant information

Example: 5 + (2 + 3)

e

ml\
+ A 4

NA
U)V

VANDERBILT
\t School of Engineering 44

Dynamic, Static, and Dataflow Analysis

e A control flow graph (CFG) is a graph representation of all paths

that might be traversed through a program during execution

64D ¢

if-then-else do until

VANDERBILT
\l School of Engineering 45

Dynamic, Static, and Dataflow Analysis

e Dataflow analysis
o Gather information on the possible set of values at various points
o Forward analysis
m e.g. definitely null, constant propagation
o Backward analysis

m e.g. secure information flow, liveness

VANDERBILT
\t School of Engineering 46

Static, and Dataflow Analysis

e Forward analysis

X:=3 Analyze the value of X ...

VANDERBILT
School of Engineering 47

Dynamic, Static, and Dataflow Analysis

e Forward analysis

Xi=3
B>0

X= T

- xf\gnalyze the value of X ...

- X=3
A)(:3 T
A s o)

\/

VANDERBILT
School of Engineering

48

Static, and Dataflow Analysis

e Backward analysis

— Hwx) =
X := P&{swura‘(} ’_’ 7[
X:= So-'\;fize(x) ‘ (t) = ’f
B B k— Hx) =]C
/ H x) =+
— Hu)= : He) =
Y= Zrw f y:= 0 \]L
Hu)"f'/ Hx) - f
N S /’[(2
&ZSP(N’ (x) a f
F [’(U)r,{_
X:= Po\sgwmaﬂ()
K— 7) =
Azg dloe §
Hul= f

VANDERBILT
School of Engineering 49

Static, and Dataflow Analysis

e Backward analysis

— Hex) =
K = P&(swolol() - 7[
X:= Son,‘-fize(x) " [(K) :1(
k— H(x) =
B> o e =t
/ Hiegye }/-t
(’(U) l‘[()() =
y:= Z+w . O \ f(.
\HU/JZ:/ Her) - j\/‘t
(= ¢
&s ley (x)
et E—= G
X:= PkSSwnrJ() o }/f
Azg A
Hul= ft

VANDERBILT
School of Engineering 50

Dynamic, Static, and Dataflow Analysis

e Rice’s Theorem and undecidability of program’s properties
o All of the interesting properties of a program are undecidable
o Dataflow analysis is conservative program analyses (imprecision;
okay to say we don’t know)

e Does dataflow analysis always terminate?

VANDERBILT
\t School of Engineering 51

Questions?

VANDERBILT
School of Engineering 52

Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage

V

VANDERBILT
School of Engineering 53

Defect Reporting and Triage

e Will be covered next class

VANDERBILT
\ / School of Engineering 54

Miscellaneous

e Know your guest lecture materials
e Know your homework assignments
e May be beneficial to know optional readings (extra-credit)

e May be beneficial to know the trivia (extra-credit)

VANDERBILT
School of Engineering 55

Defect Reporting and Triage

e Fault - exceptional situation at run time

e Defect - characteristic of a product which hinders its
usability for its intended purpose

e Bug report - Accurately and precisely describe the bug
and how to reproduce it

e Triage - measure of urgency

VANDERBILT
School of Engineering 56

Questions?

VANDERBILT
School of Engineering 57

Homework 3 Intro
CS 4278/5278: Principles of Software Engineering

VANDERBILT
\(School of Engineering 58

Starting Point

If you haven't started, please start as soon as possible. This
one can take pretty long.

VANDERBILT
School of Engineering 59

Starting Point

e Grading server uses Python 3.5.2
o So newer features like f-strings are not supported

e Read documentation on the ast module and the astor module.

e You should submit a single file, “mutate.py”

» [13

o The program should generate mutants that are named “0.py”, “1.py”, ... (up to 100 files)

o Other outputs are ignored

e Can someone quickly explain what mutation testing is?

o hint: make sure to review mutation testing for the exam!

VANDERBILT
School of Engineering 60

Mutation Operators
You should implement and support the following three mutation activities:
1. Negate any single comparison operators (>= becomes <, = becomes =)

2. Swap binary operators +, and -, as well as * and //.

3. Delete an assignment or function call statement.

VANDERBILT
School of Engineering 61

Held-Out Test Suites

e Test Suites A, B, C, D, and E have 92%, 91%, 90%, 88%, and 79% statement
coverage of fuzzywuzzy, respectively. These suites have 80, 57, 47, 32, and 9
tests, respectively.

e Swap Binary Operators to distinguish Test Suite Aand B from C, D, and E

e Swap Comparison Operators to distinguish between Suite B, C, D, and E

e Delete Assignments and Function Calls to distinguish C, D, and E. With
care, to distinguish between A and B.

e Higher-Order Mutation may distinguish Test Suites B, C, and D.

e Use Creativity to distinguish between Test Suite A and B
o hint: try changing assignments!

VANDERBILT
School of Engineering 62

Starter Code
Look up the “HW3 example

import ast code” posted on Piazza
import astor
with open(“xxx.py”, “r") as src:
convert BinOp “+” to “-”
tree = ast.parse(src.read())
new_tree = AddTransformer().visit(tree0) // how to write a transformer?
file = astor.to_source(new _tree).strip()

then write to an output file

VANDERBILT
School of Engineering 63

Starter Code

e How to write a Transformer?
o Read the ast.NodeVisitor and ast.NodeTransformer sections in ast documentation
m NodeTransformer is a subclass of NodeVisitor (recall ISD concepts...)
m Use inheritance to create different transformers:
e e.x., class AddTransformer(ast.NodeTransformer)
e Transformer subclasses should have a visitor function (see documentation)
m https://docs.python.org/3/library/ast.html
o How do | parse a python file into an AST? How do | turn an AST into a source file?
m Read documentation on ast.parse, ast.dump, astor.to_source, etc.
m https://astor.readthedocs.io/en/latest/

e Is this the only approach?
o No, previous students have tried several other approaches that worked well!
o The transformer approach above is one that should be straightforward

VANDERBILT
School of Engineering

64

https://docs.python.org/3/library/ast.html
https://astor.readthedocs.io/en/latest/

Most Common Pitfall

e Don't start with high order mutants and then adjust.

o Most students who finished this assignment quickly started with
low order mutants. Then, adjust your strategies and built up

higher order mutants slowly based on your low order mutants.

e If you used ChatGPT, it tends to generate really high-order

mutants from the start.

VANDERBILT
School of Engineering 65

Common Pitfalls and Advices

—_—

Don’t start with higher order mutants!
a. Though carefully designed higher order mutants can be important, most higher order mutants have a high chance of being
detected by every test suite.

Increasing the odds of one mutation operator also effectively reduces the odds of the others (since
you can only produce a fixed number of mutants)

Be careful not to mistakenly share the tree data structure between mutants, as you may end up with
more edits than you thought

Try making a high-quality test suite locally and evaluating against it.

Make sure you actually have a chance of mutating every relevant node.

You may want to implement additional mutation operators.
a. See https://huang.isis.vanderbilt.edu/cs4278/readings/mutation-testing.pdf
After creating your mutants, you should run pylint to minimize the number of linting/syntax errors

VANDERBILT
School of Engineering 66

reported

https://huang.isis.vanderbilt.edu/cs4278-sp26/readings/mutation-testing.pdf

A Strategy that Worked with Many Students

% Key Insight:

The Transformer class inherits from the Visitor class, so they
traverse the AST in the same order.

, VANDERBILT
\r School of Engineering 67

A Strategy that Worked with Many Students

e Don't jump so fast into changing the AST. Instead, visit the
tree first and check the operators of interest.
e Write a list containing the locations of all nodes of interest.

The order is determined by the traversal order of the visitor.

VANDERBILT
\t School of Engineering 68

A Strategy that Worked with Many Students

e Now, you have a list of the locations of all nodes of interest.
e Build your strategies using this list.

o Keep track of what mutations worked and what doesn’t

VANDERBILT
\/ School of Engineering 69

Low vs. High Order Mutants

e You can get full credit with
o Only order 1 mutants
o Only high order mutants

o A combination of low and high order mutants

VANDERBILT
\t School of Engineering 70

Interested iIn AST?

Take Compilers (CS 3276/5276)!

VANDERBILT

School of Engineering 71

