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Exam Structure

e Paper-based, written exam (9-12 pages)

e Bring a pen/pencil

e 100 points in total

e 6-7 multipart questions + 1 multipart bonus (4-6 pts)

e Short answer, answer bank, fill in the blank
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Exam Structure

e Open-book, open-notes, open-internet

e NO ChatGPT

e NO collaborations/communications (e.g. online chatting)
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General Tips

e The exam will be fast-paced
e So study in advance (e.g. there’s no time to review/learn a

concept on the spot)
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Questions?
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Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage
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Process, Risk, Scheduling

e \Waterfall, Spiral, Agile - advantages and shortcomings

Implementation

Verification

AGILE METHODOLOGY
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Process, Risk, Scheduling

e Defect cost vs. creation/detection time

e Result of failing to plan

100%

Trashing/ Rework

0%
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Process, Risk, Scheduling

e Risks are everywhere in a software process

o Staff illness or turnover, market competition, slow progress...

e Risks, along with a lack of data, leads to uncertainties
e Uncertainties can be reduced by measurement

o More on this later...
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Process, Risk, Scheduling

e Zero-risk bias
o Prefer eliminating risk over larger reduction in risk

e Risk management is key to project management

Risk Project
Management Management
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Process, Risk, Scheduling

e Scheduling manages risk during project execution

e Scheduling is key to a software process

o A project should plan time, cost, resources, etc.
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Process, Risk, Scheduling

e Strategies to estimate time for a project
o A constructive cost model (cocomo)
e Milestones vs. deliverables
o Endpoint of a task vs. results for the customer

e “Almost done” problem
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Process, Risk, Scheduling

e In general, know your good practices and bad practices!
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Questions?
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What's the narratives so far?

=> Software processes come with risks, which leads to uncertainty

-> Measurement and quality assurance can reduce uncertainty
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Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage
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Measurement and Quality Assurance

e Measurements measure all kinds of things
o Software quality, process quality, funding, etc.
e Measurements assist decision making

o Example: where should funds/effort be allocated?
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Measurement and Quality Assurance

e Measurement of code quality
o Maintainability Index
m Halstead Volume

m Cyclomatic Complexity

m Lines of Code
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Measurement and Quality Assurance

e Types of validity for a given metric
o Construct, predictive, external
e Metric-based incentives

o What could be a drawback?
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Measurement and Quality Assurance

e McNamara Fallacy

o Making decisions based solely on quantitative metrics
e Streetlight effect

o Searching for something and looking only where it is easiest
e Statistics

o False positive paradox, correlation != causation, confounding variables

VANDERBILT
School of Engineering 22



Measurement and Quality Assurance

e Measurements / software metrics should be used carefully!
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Measurement and Quality Assurance

e Example: you are working on a web development project.

©)

@)

©)

What could be a risk?
What's the uncertainty associated with the risk?
How can a measurement be used to reduce that uncertainty?

In general, what are some good vs. bad practices?
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Measurement and Quality Assurance

e Halting Problem in QA
o We can never be sure a program is correct
e Testing can give us an estimate

o Demonstrates the presence of bugs, not their absence
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Questions?
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Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage
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Testing and Code Review

e Types of testing

o Regression - running old tests

o Unit - test individual pieces

o Integration - end-to-end testing

o Fuzz - testing lots of random inputs

o Penetration - testing for security vulnerabilities

o Mocking - test with simulated (not real) objects
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Testing and Code Review

e Coverage as a metric for test suite comparison

o Branch, line, & path coverage
o You should be able to calculate branch and line coverage

o s it easy to enumerate paths?
e Coverage instrumentation and relation to observer effect

o Instrumenting a program could change its behavior
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Testing and Code Review

e Mutation testing
o Defect seeding to test quality of a test suite
o Intentionally adding bugs, and then kill that mutant
e Mutation operator and mutant orders
e Competent programmer hypothesis & coupling effect
o How do they relate to mutation testing?
e Equivalent mutants

e Know how to calculate mutation score
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Testing and Code Review

e Atest case consists of

o An input (data), an oracle (expected output), and a comparator
e Test Input Generation (automatically)

o Guided by line/branch/path enumeration
e Test Oracle Generation (automatically)

o Oracle inference via invariants
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Testing and Code Review

e |[nvariants and oracle inference

o Invariants are predicate over expressions that is true on all

executions

o High quality/confidence invariants can serves as oracleS

e Common vs correct behavior for invariant inference
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Testing and Code Review

e Alpha Testing - by developers
e Beta Testing - by external users

e A/B testing - show impact of a difference in one feature

e Jest suite minimization

o How hard is it?
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Testing and Code Review

e Unit Testing

o You should know how to handwrite a unit test case with JUnit

o Criteria for good unit test

o @RepeatedTest, @Timeout, @BeforeEach, @ParameterizedTest
o try/ catch, assert

o Think about boundary / empty / error cases
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Testing and Code Review

e Inspection incentive and root cause analysis

o Why inspect? To prevent problems from reoccurring
e Metrics on inspection

o Accuracy, speed, focus fatigue, etc.
e Different types of code review

o Formal inspection, walkthrough, pair programming, passaround,

ad hoc
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Testing and Code Review

e Code review

o A second pair of eyes; find defects, improve quality
e Formal code inspection

o Ateam effort; more formal and holistic
e Pull request

o Proposed changes to merge into a repository
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Questions?
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Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage
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Dynamic, Static, and Dataflow Analysis

e Dynamic analysis - analyzing a program by running it

e Steps

O

O

O

Instrument the program at compile time (on source / binary code)
Run program systematically (controlled input or environment)
Monitor internal state at runtime

Analyze results (path coverage, information flow, profiling)
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Dynamic, Static, and Dataflow Analysis

Race condition

o Qutput depends on sequence or timing of “uncontrollable” events
Taint tracking using sources and sinks

Dynamic analysis is very input dependent

Dynamic analysis focuses on one property of output information
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Dynamic, Static, and Dataflow Analysis

e Examples of dynamic analysis
o [Eraser - shared variable must be guarded by a lock
o Chaos Monkey - random destructions of services
o CHESS - tracks different combinations of thread interleaving

o Driver Verifier - replaces default OS subroutines with others

e You need to understand what these tools are doing and what could

possibly go wrong with each tool
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Dynamic, Static, and Dataflow Analysis

e Soundness vs. completeness
o Sound analysis: no false negatives
m e.g. all bugs are identified
o Complete analysis: no false positives

m e.g. all reported bugs are actually bugs
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Dynamic, Static, and Dataflow Analysis

e Static analysis - analysis of code not at runtime
e Dataflow analysis - a popular approach to static analysis
e Main ideas
o Abstraction as hiding unnecessary details to simplify program

o Programs being simplified down to trees, graphs, or strings
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Dynamic, Static, and Dataflow Analysis

e Abstract Syntax Tree (AST) represents syntactic structure of

source code; it records only semantically relevant information

Example: 5 + (2 + 3)

e

ml\
+ A 4

NA
U)V
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Dynamic, Static, and Dataflow Analysis

e A control flow graph (CFG) is a graph representation of all paths

that might be traversed through a program during execution

64D ¢

if-then-else do until
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Dynamic, Static, and Dataflow Analysis

e Dataflow analysis
o Gather information on the possible set of values at various points
o Forward analysis
m e.g. definitely null, constant propagation
o Backward analysis

m e.g. secure information flow, liveness
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Static, and Dataflow Analysis

e Forward analysis

X:=3 Analyze the value of X ...
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Dynamic, Static, and Dataflow Analysis

e Forward analysis

Xi=3
B>0

X= T

- xf\gnalyze the value of X ...

- X=3
A )(:3 T
A s o)

\/
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Static, and Dataflow Analysis

e Backward analysis
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Static, and Dataflow Analysis

e Backward analysis
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Dynamic, Static, and Dataflow Analysis

e Rice’s Theorem and undecidability of program’s properties
o All of the interesting properties of a program are undecidable
o Dataflow analysis is conservative program analyses (imprecision;
okay to say we don’t know)

e Does dataflow analysis always terminate?
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Questions?
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Exam Topics

Process, Risk, Scheduling
Measurement and Quality Assurance
Testing and Code Review

Dynamic, Static, and Dataflow Analysis

Defect Reporting and Triage
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Defect Reporting and Triage

e Will be covered next class
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Miscellaneous

e Know your guest lecture materials
e Know your homework assignments
e May be beneficial to know optional readings (extra-credit)

e May be beneficial to know the trivia (extra-credit)
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Defect Reporting and Triage

e Fault - exceptional situation at run time

e Defect - characteristic of a product which hinders its
usability for its intended purpose

e Bug report - Accurately and precisely describe the bug
and how to reproduce it

e Triage - measure of urgency
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Questions?
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Homework 3 Intro
CS 4278/5278: Principles of Software Engineering

VANDERBILT
\( School of Engineering 58



Starting Point

If you haven't started, please start as soon as possible. This
one can take pretty long.
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Starting Point

e Grading server uses Python 3.5.2
o So newer features like f-strings are not supported

e Read documentation on the ast module and the astor module.

e You should submit a single file, “mutate.py”

» [13

o The program should generate mutants that are named “0.py”, “1.py”, ... (up to 100 files)

o  Other outputs are ignored

e Can someone quickly explain what mutation testing is?

o hint: make sure to review mutation testing for the exam!
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Mutation Operators
You should implement and support the following three mutation activities:
1. Negate any single comparison operators (>= becomes <, = becomes =)

2. Swap binary operators +, and -, as well as * and //.

3. Delete an assignment or function call statement.
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Held-Out Test Suites

e Test Suites A, B, C, D, and E have 92%, 91%, 90%, 88%, and 79% statement
coverage of fuzzywuzzy, respectively. These suites have 80, 57, 47, 32, and 9
tests, respectively.

e Swap Binary Operators to distinguish Test Suite Aand B from C, D, and E

e Swap Comparison Operators to distinguish between Suite B, C, D, and E

e Delete Assignments and Function Calls to distinguish C, D, and E. With
care, to distinguish between A and B.

e Higher-Order Mutation may distinguish Test Suites B, C, and D.

e Use Creativity to distinguish between Test Suite A and B
o hint: try changing assignments!
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Starter Code
Look up the “HW3 example

import ast code” posted on Piazza
import astor
with open(“xxx.py”, “r") as src:
# convert BinOp “+” to “-”
tree = ast.parse(src.read())
new_tree = AddTransformer().visit(tree0) // how to write a transformer?
file = astor.to_source(new _tree).strip()

# then write to an output file
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Starter Code

e How to write a Transformer?
o Read the ast.NodeVisitor and ast.NodeTransformer sections in ast documentation
m  NodeTransformer is a subclass of NodeVisitor (recall ISD concepts...)
m Use inheritance to create different transformers:
e e.x., class AddTransformer(ast.NodeTransformer)
e Transformer subclasses should have a visitor function (see documentation)
m https://docs.python.org/3/library/ast.html
o How do | parse a python file into an AST? How do | turn an AST into a source file?
m Read documentation on ast.parse, ast.dump, astor.to_source, etc.
m https://astor.readthedocs.io/en/latest/

e Is this the only approach?
o No, previous students have tried several other approaches that worked well!
o The transformer approach above is one that should be straightforward
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Most Common Pitfall

e Don't start with high order mutants and then adjust.

o Most students who finished this assignment quickly started with
low order mutants. Then, adjust your strategies and built up

higher order mutants slowly based on your low order mutants.

e If you used ChatGPT, it tends to generate really high-order

mutants from the start.
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Common Pitfalls and Advices

—_—

Don’t start with higher order mutants!
a.  Though carefully designed higher order mutants can be important, most higher order mutants have a high chance of being
detected by every test suite.

Increasing the odds of one mutation operator also effectively reduces the odds of the others (since
you can only produce a fixed number of mutants)

Be careful not to mistakenly share the tree data structure between mutants, as you may end up with
more edits than you thought

Try making a high-quality test suite locally and evaluating against it.

Make sure you actually have a chance of mutating every relevant node.

You may want to implement additional mutation operators.
a. See https://huang.isis.vanderbilt.edu/cs4278/readings/mutation-testing.pdf
After creating your mutants, you should run pylint to minimize the number of linting/syntax errors
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https://huang.isis.vanderbilt.edu/cs4278-sp26/readings/mutation-testing.pdf

A Strategy that Worked with Many Students

% Key Insight:

The Transformer class inherits from the Visitor class, so they
traverse the AST in the same order.

, VANDERBILT
\r School of Engineering 67



A Strategy that Worked with Many Students

e Don't jump so fast into changing the AST. Instead, visit the
tree first and check the operators of interest.
e Write a list containing the locations of all nodes of interest.

The order is determined by the traversal order of the visitor.
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A Strategy that Worked with Many Students

e Now, you have a list of the locations of all nodes of interest.
e Build your strategies using this list.

o Keep track of what mutations worked and what doesn’t
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Low vs. High Order Mutants

e You can get full credit with
o Only order 1 mutants
o Only high order mutants

o A combination of low and high order mutants
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Interested iIn AST?

Take Compilers (CS 3276/5276)!
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