Final Exam Review
CS 4278/5278: Principles of Software Engineering

Skyler Grandel
Graduate Teaching Assistant
skyler.h.grandel@vanderbilt.edu

Department of Computer Science

cromwor iasns Come Participate in Our Study!
Software Comment Analysis

T Junior devs writing comments:

* What does this comment say about 1its code?

*

* @Task - Identify the purpose of a C/C++ comment
* and indicate if it is relevant

*

* @Duration - 45 to 60 minutes
*

* @Compensation - $20
*

* @Location - Online
*

* @Contact - Email sRkyler.h.grandel@vanderbilt.edu 2r)
/

Delta Debugging

e Delta debugging is an automated debugging approach that finds a
one-minimal interesting subset of a given set.

e Delta debugging is based on divide and conquer and relies on
critical assumptions (monotonicity, unambiguity, and consistency).

e [t can be used to find which code changes cause a bug, to
minimize failure inducing inputs, and even to find harmful thread
schedules.

Delta Debugging

Remember the three main assumptions around Delta Debugging...

e Monotonicity - if X is interesting, set of X & anything is

interesting
e Unambiguity - if X & Y are interesting, intersection of X & Y is

interesting
e Consistency - X is either interesting or not interesting

And the problems that delta debugging seeks to solve are
simplifying, isolating, and identifying failure-inducing components

Fault Localization Overview

e Debugger: single-stepping through the program and
Inspecting variable values.

e Fault Localization: identifying lines implicated in a bug.
Humans are better at localizing some types of bugs than

others.
e Automatic tools can help with the dynamic analyses of fault

localization and profiling

Debugger

e \What is a debugger?
o Can operate on source code or assembly code
o Inspect the values of registers, memory
o Key Features
m Attach to process
Single-stepping
Breakpoints
Conditional Breakpoints
Watchpoints

Signals

e Asynchronous notification sent to a process about an event
e Signal handler: a procedure that will be executed when the
signal occurs.
o vulnerable to race conditions

Fault Localization Tools

e Spectrum-Based Fault Localization
o Dynamic Analysis
o Comparing statements covered on failing test cases to
statements covered on passing test cases
e Coverage-Based Fault Localization

Profiling

e A profiler is a performance analysis tool that measures the
frequency and duration of function calls as a program runs.

e Aflat profile computes the average call times for functions
but does not break times down based on context.

e A call-graph profile computes call times for functions and
also the call-chains involved

e E.x., event-based profiling, statistical profiling

Event-Based Profiling

e Interpreted languages provide special hooks for profiling
o Java: JVM-Profile Interface, JVM API
o Python: sys.set profile() module
o Ruby: profile.rb, etc.

e You register a function that will get called whenever the
target program calls a method, loads a class, allocates an
object, etc.

o cf. “signal handler”

10

Statistical Profiling

You can arrange for the operating system to send you a
signal every X seconds

In the signal handler you determine the value of the target
program counter

o And append it to a growing list file

o This is sampling

Later, you use debug information from the compiler to map
the PC values to procedure names

o Sum up to get amount of time in each procedure

11

Sampling Analysis

e Advantages
o Simple and cheap — the instrumentation is unlikely to
disturb the program
o No big slowdown
e Disadvantages
o Can completely miss periodic behavior (e.g., you sample
every k seconds but do a network send at times 0.5 + nk
seconds)
o High error rate

12

Patterns & Anti-Patterns

e Patterns: reusable solutions to common software problems
e Structural

o Adapter
e Creational

o Named constructor, factory, abstract factory, singleton
e Behavioral

o lterator, observer, template

Patterns & Anti-Patterns

e Structural patterns
o Simplify relationships between entities by creating interfaces
o Hides implementation details
o Example: Adapter pattern
m Common adapters: Stack, fstream in C++, autograder

14

Patterns & Anti-Patterns

e Creational patterns

o Control object creation
o Factory pattern
m Purpose is to create objects without having return type specify exact
subclass
o Abstract Factory pattern
m Encapsulates group of factories, without specifying concrete classes
o Singleton pattern
m Only allows one instance of a class, provides global access to it

15

Patterns & Anti-Patterns

e Behavioral patterns
o Support communication patterns between objects
o lterator
m Traversal of containers irrespective of implementation
o Observer
m Dependent objects are notified upon a state change
m One-to-many: one object updates, many are notified

16

Patterns & Anti-Patterns

e Behavioral patterns

o Support communication patterns between objects

o Template method
m Deferring some portion of work to subclass by allowing it to override

the “default” virtual methods

o Publish-Subscribe
m Message senders publish on topics and receivers subscribe to topics
m Neither pubs nor subs need to know about each other

17

Patterns & Anti-Patterns

e Anti-pattern: an ineffective solution to a problem
e Psychology: Hick’s Law - increasing # of choices increases

decision time logarithmically
o Application to menu and Ul design

18

Code Inspection and the Brain

e Comprehending code is where developers spend most time

e \What makes code easy to read? Should we ask
programmers?

e Self-reporting is unreliable (3 of top 4 self-reported features

are irrelevant)
o High variability and low mean validity

19

Code Inspection and the Brain

e Brain uses energy, energy transported into the brain with
oxygen in the blood

e Can use differing electromagnetic properties of oxygen-rich
or -poor blood to tell where brain function is occurring with
magnetic resonance (MR) scanner

e Functional magnetic resonance imaging (fMRI) is
non-invasive way to probe for cognitive function in this way

20

Code Inspection and the Brain

e So what works?
e Top-down comprehension - experience, expectation, and

semantic cues (known as beacons) guide understanding
o Plans

e Bottom-up comprehension - meaning is obtained from every
individual statement, then put all together into a larger,

holistic understanding
o Semantic clunking

21

Code Inspection and the Brain

e Comprehension with semantic cues requires less cognitive
effort than bottom-up comprehension

e \When writing comments or naming identifiers, do so with the
“why” in mind

e Code writing requires more activity in parts of the brain
associated with top-down control, prose writing, planning,
etc.

22

Code Inspection and the Brain

e Using fMRI analysis, hard to process data

e Can classify which task a participant is undertaking only
based on brain activity

e Means that Code Review, Code Comprehension, and Prose
Review all have distinct neural representations

e As proficiency in coding increases, neural representations of
code and prose are less differentiable (still distinct, though)

23

Code Inspection and the Brain

Summary of Techniques:

fMRI

fNIRS

Eye tracking
Smartwatch data
Surveys
Interviews

24

Automatic Program Repair

e Anyone can submit a bug report in “bug bounty” programs at
major software companies

e More economical to pay strangers to submit defect reports

e Only 38% are true positives, but that's still a lot of bugs

e \We have more bugs than time to repair them

25

Automatic Program Repair

Can use strategies and techniques learned in this class to
find evidence of and fix existing bugs

Fault localization, mutation, testing to find/fix bugs

A patch might contain extraneous edits (use delta debugging
to minimize)

Each repair has to pass the whole test suite

Can use static analysis to prevent testing “duplicates” aka
equivalent patches

26

Automatic Program Repair

e Ideally...

o Mutation testing takes a program that passes all tests, and human
mistake-based mutants (that aren’t equivalent) must fail at least one
test

o Program repair takes a program that fails test suite, requires that one
mutant (based on human repairs from fault localization) only passes
all tests

27

Ll]

COMPILE AND TEST

(EVALUATE FITNESS)

>
DISCARS

£,

- }

Genirog

£
2 |

€] &=
— V k " .C
i

ACCERT

A 4

° C‘

MUTATE

Ve

i

28

Automatic Program Repair

e APRis good at fixing lots of bugs

o Typically require small changes

o Changes typically have to be AST modifications
e APRisn’t so good at other types of bugs (yet)

o Particular values being off

o Bugs that require human expertise

29

Productivity

e EXxperiment with system response time

o Short term mental memory buffer can be disrupted by increased
system response time
Faster response time enabled significant performance enhancement
o Cost of upgrading a processor can be more than justified by savings
In user time

e “Programming speed” - higher-order language, less CPU
time, faster coding

e “Program economy” - faster running programs, experience,
lower-level language

30

Productivity

Experts just solve problems in one step - quicker

Novices focus more on surface features

Experts focus on underlying principles

With learning, shift in how knowledge is organized (from
surface to principles)

Improving how one learns would be done by identifying
available knowledge and manipulating or working off of that

31

Productivity

e Main idea: programming speed (associated with a
higher-order language, faster coding, less CPU time) is a
commonly mistaken belief

e Using abstraction is the real path to success

e (Can get abstraction through language, or other avenues -
the ideal of abstraction is the insight

e Abstraction can take years, but that is the true limitation to

productivity

32

