
Final Exam Review
CS 4278/5278: Principles of Software Engineering

Skyler Grandel
Graduate Teaching Assistant
skyler.h.grandel@vanderbilt.edu

1



Department of Computer Science

Software Comment Analysis
Come Participate in Our Study!



Delta Debugging
● Delta debugging is an automated debugging approach that finds a 

one-minimal interesting subset of a given set. 

● Delta debugging is based on divide and conquer and relies on 
critical assumptions (monotonicity, unambiguity, and consistency). 

● It can be used to find which code changes cause a bug, to 
minimize failure inducing inputs, and even to find harmful thread 
schedules.

3



Delta Debugging
Remember the three main assumptions around Delta Debugging…

● Monotonicity - if X is interesting, set of X & anything is 
interesting

● Unambiguity - if X & Y are interesting, intersection of X & Y is 
interesting

● Consistency - X is either interesting or not interesting

And the problems that delta debugging seeks to solve are 
simplifying, isolating, and identifying failure-inducing components

4



Fault Localization Overview
● Debugger: single-stepping through the program and 

inspecting variable values.
● Fault Localization: identifying lines implicated in a bug. 

Humans are better at localizing some types of bugs than 
others.

● Automatic tools can help with the dynamic analyses of fault 
localization and profiling

5



Debugger
● What is a debugger?

○ Can operate on source code or assembly code
○ Inspect the values of registers, memory
○ Key Features

■ Attach to process
■ Single-stepping
■ Breakpoints
■ Conditional Breakpoints
■ Watchpoints

6



Signals
● Asynchronous notification sent to a process about an event
● Signal handler: a procedure that will be executed when the 

signal occurs.
○ vulnerable to race conditions

7



Fault Localization Tools
● Spectrum-Based Fault Localization

○ Dynamic Analysis
○ Comparing statements covered on failing test cases to 

statements covered on passing test cases
● Coverage-Based Fault Localization

○

8



Profiling
● A profiler is a performance analysis tool that measures the 

frequency and duration of function calls as a program runs.
● A flat profile computes the average call times for functions 

but does not break times down based on context.
● A call-graph profile computes call times for functions and 

also the call-chains involved
● E.x., event-based profiling, statistical profiling

9



Event-Based Profiling
● Interpreted languages provide special hooks for profiling

○ Java: JVM-Profile Interface, JVM API
○ Python: sys.set_profile() module
○ Ruby: profile.rb, etc.

● You register a function that will get called whenever the 
target program calls a method, loads a class, allocates an 
object, etc.
○ cf. “signal handler”

10



Statistical Profiling
● You can arrange for the operating system to send you a 

signal every X seconds
● In the signal handler you determine the value of the target 

program counter
○ And append it to a growing list file
○ This is sampling

● Later, you use debug information from the compiler to map 
the PC values to procedure names
○ Sum up to get amount of time in each procedure

11



Sampling Analysis
● Advantages

○ Simple and cheap – the instrumentation is unlikely to 
disturb the program

○ No big slowdown
● Disadvantages

○ Can completely miss periodic behavior (e.g., you sample 
every k seconds but do a network send at times 0.5 + nk 
seconds)

○ High error rate
12



Patterns & Anti-Patterns
● Patterns: reusable solutions to common software problems
● Structural

○ Adapter
● Creational

○ Named constructor, factory, abstract factory, singleton
● Behavioral

○ Iterator, observer, template

13



Patterns & Anti-Patterns
● Structural patterns

○ Simplify relationships between entities by creating interfaces
○ Hides implementation details
○ Example: Adapter pattern

■ Common adapters: Stack, fstream in C++, autograder

14



Patterns & Anti-Patterns
● Creational patterns

○ Control object creation 
○ Factory pattern

■ Purpose is to create objects without having return type specify exact 
subclass

○ Abstract Factory pattern
■ Encapsulates group of factories, without specifying concrete classes

○ Singleton pattern
■ Only allows one instance of a class, provides global access to it

15



Patterns & Anti-Patterns
● Behavioral patterns

○ Support communication patterns between objects
○ Iterator

■ Traversal of containers irrespective of implementation
○ Observer

■ Dependent objects are notified upon a state change
■ One-to-many: one object updates, many are notified

16



Patterns & Anti-Patterns
● Behavioral patterns

○ Support communication patterns between objects
○ Template method

■ Deferring some portion of work to subclass by allowing it to override 
the “default” virtual methods

○ Publish-Subscribe
■ Message senders publish on topics and receivers subscribe to topics
■ Neither pubs nor subs need to know about each other

17



Patterns & Anti-Patterns
● Anti-pattern: an ineffective solution to a problem
● Psychology: Hick’s Law - increasing # of choices increases 

decision time logarithmically
○ Application to menu and UI design

18



Code Inspection and the Brain
● Comprehending code is where developers spend most time
● What makes code easy to read? Should we ask 

programmers?
● Self-reporting is unreliable (3 of top 4 self-reported features 

are irrelevant)
○ High variability and low mean validity

19



Code Inspection and the Brain
● Brain uses energy, energy transported into the brain with 

oxygen in the blood
● Can use differing electromagnetic properties of oxygen-rich 

or -poor blood to tell where brain function is occurring with 
magnetic resonance (MR) scanner

● Functional magnetic resonance imaging (fMRI) is 
non-invasive way to probe for cognitive function in this way

20



Code Inspection and the Brain
● So what works?
● Top-down comprehension - experience, expectation, and 

semantic cues (known as beacons) guide understanding
○ Plans

● Bottom-up comprehension - meaning is obtained from every 
individual statement, then put all together into a larger, 
holistic understanding
○ Semantic clunking

21



Code Inspection and the Brain
● Comprehension with semantic cues requires less cognitive 

effort than bottom-up comprehension
● When writing comments or naming identifiers, do so with the 

“why” in mind
● Code writing requires more activity in parts of the brain 

associated with top-down control, prose writing, planning, 
etc.

22



Code Inspection and the Brain
● Using fMRI analysis, hard to process data
● Can classify which task a participant is undertaking only 

based on brain activity
● Means that Code Review, Code Comprehension, and Prose 

Review all have distinct neural representations
● As proficiency in coding increases, neural representations of 

code and prose are less differentiable (still distinct, though)

23



Code Inspection and the Brain
Summary of Techniques:

● fMRI
● fNIRS
● Eye tracking
● Smartwatch data
● Surveys
● Interviews

24



Automatic Program Repair
● Anyone can submit a bug report in “bug bounty” programs at 

major software companies
● More economical to pay strangers to submit defect reports
● Only 38% are true positives, but that’s still a lot of bugs
● We have more bugs than time to repair them

25



Automatic Program Repair
● Can use strategies and techniques learned in this class to 

find evidence of and fix existing bugs
● Fault localization, mutation, testing to find/fix bugs
● A patch might contain extraneous edits (use delta debugging 

to minimize)
● Each repair has to pass the whole test suite
● Can use static analysis to prevent testing “duplicates” aka 

equivalent patches

26



Automatic Program Repair
● Ideally…

○ Mutation testing takes a program that passes all tests, and human 
mistake-based mutants (that aren’t equivalent) must fail at least one 
test

○ Program repair takes a program that fails test suite, requires that one 
mutant (based on human repairs from fault localization) only passes 
all tests

27



28



Automatic Program Repair
● APR is good at fixing lots of bugs

○ Typically require small changes
○ Changes typically have to be AST modifications

● APR isn’t so good at other types of bugs (yet)
○ Particular values being off
○ Bugs that require human expertise

29



Productivity
● Experiment with system response time

○ Short term mental memory buffer can be disrupted by increased 
system response time

○ Faster response time enabled significant performance enhancement
○ Cost of upgrading a processor can be more than justified by savings 

in user time
● “Programming speed” - higher-order language, less CPU 

time, faster coding
● “Program economy” - faster running programs, experience, 

lower-level language
30



Productivity
● Experts just solve problems in one step - quicker
● Novices focus more on surface features
● Experts focus on underlying principles
● With learning, shift in how knowledge is organized (from 

surface to principles)
● Improving how one learns would be done by identifying 

available knowledge and manipulating or working off of that

31



Productivity
● Main idea: programming speed (associated with a 

higher-order language, faster coding, less CPU time) is a 
commonly mistaken belief

● Using abstraction is the real path to success
● Can get abstraction through language, or other avenues - 

the ideal of abstraction is the insight
● Abstraction can take years, but that is the true limitation to 

productivity

32


